Novus® Spectra™
Solid-State 532-nm Green Laser
Operator Manual
General Operation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>7</td>
</tr>
<tr>
<td>Introduction: The Novus Spectra Laser</td>
<td>9</td>
</tr>
<tr>
<td>Characteristics of the 532-nm green laser beam</td>
<td>9</td>
</tr>
<tr>
<td>Laser Preparation</td>
<td>10</td>
</tr>
<tr>
<td>Novus Spectra Components</td>
<td>11</td>
</tr>
<tr>
<td>Laser console</td>
<td>12</td>
</tr>
<tr>
<td>Remote control (optional)</td>
<td>12</td>
</tr>
<tr>
<td>External door interlock plug</td>
<td>12</td>
</tr>
<tr>
<td>Footswitch</td>
<td>12</td>
</tr>
<tr>
<td>Delivery devices</td>
<td>12</td>
</tr>
<tr>
<td>Connection Instructions</td>
<td>13</td>
</tr>
<tr>
<td>Connecting the footswitch</td>
<td>14</td>
</tr>
<tr>
<td>Using the external door interlock</td>
<td>15</td>
</tr>
<tr>
<td>Plugging in the main power cable</td>
<td>16</td>
</tr>
<tr>
<td>Connecting the remote control</td>
<td>17</td>
</tr>
<tr>
<td>Connecting the delivery device(s)</td>
<td>18</td>
</tr>
<tr>
<td>Connecting eye safety filters (LaserLink, slit lamp, and Acculite only)</td>
<td>19</td>
</tr>
<tr>
<td>Laser Console Basics</td>
<td>22</td>
</tr>
<tr>
<td>Turning on the laser</td>
<td>22</td>
</tr>
<tr>
<td>Restarting the laser</td>
<td>22</td>
</tr>
<tr>
<td>Turning off the laser</td>
<td>23</td>
</tr>
<tr>
<td>Emergency off</td>
<td>23</td>
</tr>
<tr>
<td>Disconnecting the laser</td>
<td>24</td>
</tr>
<tr>
<td>Moving the laser console</td>
<td>24</td>
</tr>
<tr>
<td>Laser beam integrity check</td>
<td>25</td>
</tr>
<tr>
<td>Laser Console Display and Remote Control Basics</td>
<td>26</td>
</tr>
<tr>
<td>Laser console display selectors, icons, and displays</td>
<td>26</td>
</tr>
</tbody>
</table>
Remote control selectors, icons, and displays: 27
Laser status and laser emission: ready and standby modes: 28

Setting Treatment Parameters: 30
Selecting and verifying the delivery device: 30
Adjusting the aiming beam intensity: 30
Setting the power: 32
Setting the exposure time (pulse duration): 32
Setting the treatment interval: 34
Resetting the pulse counter: 36

Preoperative Instructions: 37
Intraoperative Instructions: 38
Postoperative Instructions: 39

Maintenance Overview: 41
Troubleshooting Guide: 43
User Maintenance: 47
Annual laser maintenance: 47
Laser repair: 47
Clean the external surfaces of the laser console: 47
Clean the laser control screen: 47
Water utilities: 47

Electrical Requirements: 48
Replacing the Fuses: 49
Specifications: 49
Calibration Procedure: 51
Calibration instructions: 52
Warranty Information: 53
Decontamination of Returned Equipment: 53

Safety and Regulatory Overview: 54
Introduction: 56
Laser Safety Eyewear: 57
Additional Ocular Protection: 60
Additional Safety Considerations: 61
Protecting nontarget tissues: 61
Fire hazards: 62
Electrical hazards: 62
Regulatory Compliance: 64
Emergency off pushbutton: 64
Key lock switch: 64
Location of controls: 64
Protective housing: 64
External door interlock: 64
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety interlocks</td>
<td>64</td>
</tr>
<tr>
<td>Manual reset</td>
<td>65</td>
</tr>
<tr>
<td>Electronic fault detection circuitry</td>
<td>65</td>
</tr>
<tr>
<td>Safety shutter</td>
<td>65</td>
</tr>
<tr>
<td>Laser emission indicators</td>
<td>65</td>
</tr>
<tr>
<td>Location of regulatory and system labels</td>
<td>66</td>
</tr>
<tr>
<td>Indications for Use</td>
<td></td>
</tr>
<tr>
<td>Overview</td>
<td>71</td>
</tr>
<tr>
<td>General Information</td>
<td>73</td>
</tr>
<tr>
<td>Tissue effects</td>
<td>73</td>
</tr>
<tr>
<td>General warnings and precautions</td>
<td>76</td>
</tr>
<tr>
<td>Laser plume precautions</td>
<td>76</td>
</tr>
<tr>
<td>Irradiance, fluence, and power</td>
<td>77</td>
</tr>
<tr>
<td>Adverse effects</td>
<td>77</td>
</tr>
<tr>
<td>Guidelines for use</td>
<td>78</td>
</tr>
<tr>
<td>Noncontact and free-beam devices</td>
<td>78</td>
</tr>
<tr>
<td>General references</td>
<td>78</td>
</tr>
<tr>
<td>Ophthalmic Applications of the Laser</td>
<td>79</td>
</tr>
<tr>
<td>Adverse effects and complications</td>
<td>80</td>
</tr>
<tr>
<td>Precautions</td>
<td>81</td>
</tr>
<tr>
<td>Guidelines for use</td>
<td>81</td>
</tr>
<tr>
<td>Anterior Segment Laser Procedures</td>
<td>84</td>
</tr>
<tr>
<td>Indications</td>
<td>84</td>
</tr>
<tr>
<td>Uses</td>
<td>84</td>
</tr>
<tr>
<td>Contraindications</td>
<td>84</td>
</tr>
<tr>
<td>Warnings</td>
<td>85</td>
</tr>
<tr>
<td>Precautions</td>
<td>85</td>
</tr>
<tr>
<td>Adverse effects</td>
<td>86</td>
</tr>
<tr>
<td>Guidelines for use</td>
<td>86</td>
</tr>
<tr>
<td>Ophthalmology References</td>
<td>88</td>
</tr>
<tr>
<td>Otologic Applications of the Laser</td>
<td>89</td>
</tr>
<tr>
<td>Indications</td>
<td>89</td>
</tr>
<tr>
<td>Uses</td>
<td>89</td>
</tr>
<tr>
<td>Contraindications</td>
<td>89</td>
</tr>
<tr>
<td>Warnings</td>
<td>90</td>
</tr>
<tr>
<td>Precautions</td>
<td>90</td>
</tr>
<tr>
<td>Guidelines for use</td>
<td>90</td>
</tr>
<tr>
<td>Otology references</td>
<td>90</td>
</tr>
<tr>
<td>Delivery Devices and Accessories</td>
<td>93</td>
</tr>
<tr>
<td>Filters</td>
<td>93</td>
</tr>
<tr>
<td>Acculite Endoprobe or fiber optic devices</td>
<td>93</td>
</tr>
<tr>
<td>Fluence</td>
<td>95</td>
</tr>
<tr>
<td>Laser indirect ophthalmoscope (LIO)</td>
<td>96</td>
</tr>
<tr>
<td>Slit lamps and LaserLinks for slit lamps</td>
<td>100</td>
</tr>
</tbody>
</table>
Overview

- Introduction: The Novus Spectra Laser 9
- Laser Preparation 10
- Novus Spectra Components 11
- Connection Instructions 13
- Laser Console Basics 22
- Laser Console and Remote Control Basics 26
- Setting Treatment Parameters 30
- Preoperative Instructions 37
- Intraoperative Instructions 38
- Postoperative Instructions 39
Introduction: The Novus Spectra Laser

The Novus® Spectra™ 532-nm green laser is the benchmark for ease, speed, and intricate treatment in ophthalmic surgery, integrating the reliability of 532-nm green light with the convenience of a small, portable laser package.

The adaptability of the Novus Spectra is ideal for ophthalmic procedures such as angle-closure glaucoma, open-angle glaucoma, diabetic retinopathy, retinal detachments, and age-related macular degeneration. It also is ideal for otologic procedures such as stapedotomy, stapedectomy, tympanoplasty, myringotomy, bleeding control, lysis of adhesions, and treatment of soft tissue adhesions. Our complete line of delivery systems and accessories further extends the versatility of the Novus Spectra laser.

Lumenis lasers and delivery systems are precision medical instruments. They have undergone extensive testing and with proper handling are useful and reliable clinical instruments. If you have questions regarding your laser or delivery system, contact your local Lumenis representative.

WARNING - Lasers generate a highly concentrated beam of light that may cause injury if improperly used. To protect the patient and the operating personnel, the entire laser and the appropriate delivery system operator manuals, including all Safety and Regulatory sections, should be carefully read and comprehended before operation.

Characteristics of the 532-nm green laser beam

The 532-nm wavelength falls in the green region of the electromagnetic spectrum. Laser light visible or invisible can cause tissue damage; therefore, eye safety precautions must be taken by the physician, patient, and any observers in the room. A low-power, visible aiming beam that is coaxial with the treatment beam is used to target tissue.

Green light energy is readily absorbed by melanin, hemoglobin, and oxyhemoglobin in the eye, but avoids macular xanthophyll. These characteristics allow for effective laser photocoagulation of ocular tissue.
Laser Preparation

The laser is shipped directly from the factory to your site. Your local Lumenis representative initially unpacks, inspects, sets up, and installs the laser to ensure that it is ready for use. In addition, Lumenis provides in-service training to ensure that your surgical staff is experienced with the operation and safety considerations of the laser.

Thereafter, you, or the nursing staff at your facility, will perform the daily maintenance routines associated with the laser and delivery devices, including inspecting and cleaning the laser and delivery devices; sterilizing; connecting, and disconnecting the delivery devices; and performing a laser beam integrity check. These procedures are detailed in this manual and in the delivery device operator manuals.
Novus Spectra Components

The Novus Spectra laser system comprises:

• a laser console with display
• an optional remote control
• a footswitch
• all electrical cables necessary for proper connection

Delivery devices, including integrated slit lamps and slit lamp tables, if ordered, may also be shipped with your laser system.

Novus Spectra Components and components

Novus Spectra laser console and components
Laser console

The laser console houses the control screen, main power keyswitch, emergency off button, control electronics, laser source and associated optics, and power supply. The laser console is the central unit to which the laser components and delivery devices attach.

Remote control (optional)

The optional remote control provides all of the necessary controls for setting treatment parameters. It can be used in place of, or in addition to, the laser console controls.

External door interlock plug

The external door interlock plug must be inserted into the external interlock receptacle on the rear of the laser console for the laser to operate. The plug comes pre-installed from the factory. The plug may be wired to an external switch to disable the laser if the treatment room doors are opened during treatment.

Footswitch

The footswitch activates the laser treatment beam when you depress it while the laser is in ready mode. If you are using the Smart footswitch, the footswitch engages the automatic eye safety filter when you place your foot inside of the footswitch housing while the laser is in ready mode. If you are using the PowerEase footswitch, you can adjust the laser power by pressing the switches on the inside left (decrease power) and right (increase power) of the footswitch housing.

Delivery devices

Delivery devices for a variety of applications may have been shipped with your Novus Spectra laser. Refer to the operator manuals included with those delivery devices for specific descriptions and operating instructions. Compatible delivery devices include Acculite endoprobes, fibers, laser integrated ophthalmoscopes (LIO), LaserLink Z and HS and integrated slit lamps.
Connection Instructions

⚠️ **CAUTION** - Do not touch any optical lens; finger oils may damage the delicate coatings.

Before connecting the laser components, inspect the individual components, cables, and electrical connections for dirt, debris, or damage. Ensure that the electrical cables are not frayed or split. Inspect all delivery devices, as instructed in the appropriate delivery device operator manual. Contact your local Lumenis representative if any component appears damaged.

Novus Spectra Connections
Connecting the footswitch

Insert the footswitch plug into the black (footswitch) receptacle on the rear of the laser console. If the footswitch is not properly connected when the laser is turned on, “E200” displays on the laser console until the footswitch is properly connected.
Using the external door interlock

The external door interlock is a safety feature that disables the laser if the treatment room doors are opened or the interlock plug is removed.

Use of an external door interlock is optional; however, an interlock plug must be inserted into the external door interlock receptacle whether or not you are using an external door interlock. The laser will be inoperative unless a plug is inserted into the receptacle. For your convenience, the Novus Spectra comes from the factory with an interlock plug pre-installed.

An external door interlock rated at 12 VDC is required for this system. When using an external door interlock, the laser automatically disables and returns to standby mode if the treatment door is opened or the interlock plug is removed. The code “ILOC” will appear on the laser console display. To resume treatment, close the treatment room door or reinsert the interlock plug, and press the Mode selector to return the system to ready mode.

Inserting the external door interlock plug
Plugging in the main power cable

1. Ensure that the keyswitch is in the (off) position.

2. Insert the mains power plug into the mains receptacle on the rear of the laser console.

3. Insert the other end of the main power plug into the wall socket and ensure that the plug is secure.
Connecting the remote control

If desired, connect the remote control at any time by inserting the remote control plug into the \(\text{REMOTE} \) (remote control) receptacle on the rear of the laser console.

Connecting the remote control
Connecting the delivery device(s)

WARNING - To avoid possible damage to the laser, use only qualified, compatible Lumenis delivery devices. Using other than Lumenis delivery devices may jeopardize safe operation or damage the laser and will void your Lumenis warranty or service contract.

WARNING - When using a fiber optic delivery device, always inspect the fiber optic cable to ensure that it has not been kinked, punctured, fractured, or otherwise damaged. The fiber optic cable may be damaged if stepped on, pulled, left lying in a vulnerable position, kinked, or tightly coiled. Do not clamp the cable with a hemostat or other instruments. If sterile tape is used, always remove the tape before lifting the cable. A damaged fiber optic cable may cause accidental laser exposure or injury to the treatment room personnel or patient, and/or fire in the treatment room.

WARNING - Carefully inspect any delivery system sterile packaging to ensure that it has not been torn or punctured. If there is any damage to the sterile packaging, do not use the delivery system

WARNING - If an emulation plug is used, the operator shall assume all responsibility for ensuring that the proper eye safety filters are used.

A variety of delivery devices are compatible with this laser. To connect a delivery device, attach the delivery device laser connector to the fiber port and delivery device receptacle (ACC), as appropriate, on the front of the laser console. Refer to the appropriate delivery device operator manual for detailed connection and operating instructions.

When a delivery device is properly connected, the corresponding icon displays on the remote control.

- ＃ represents a LaserLink™ or slit lamp
- ◼ represents a probe or handpiece
- ⚔ represents an LIO™

If the delivery device is not properly connected, an E300 error code will display on the laser console, and the delivery device icon will not illuminate on the remote control. Verify that the device is properly connected to the appropriate receptacles before turning the laser on. If the delivery device is not compatible with the Novus Spectra laser system, an E301 error code will display.
Connecting eye safety filters (LaserLink, slit lamp, and Acculite only)

Installing the eye safety filter(s)

When using a LaserLink, a Lumenis slit lamp, or Acculite delivery devices, you must install a compatible automatic eye safety filter or fixed filter onto the slit lamp or operating microscope. The eye safety filter protects the physician’s eyes from exposure to laser light while looking through the slit lamp or operating microscope.

If the eye safety filter is not properly connected to the laser, an E400 error code will display on the laser console. If the eye safety filter is not compatible, an E401 error code will display.

Refer to the appropriate delivery device operator manual for detailed eye safety filter installation instructions.

⚠️ CAUTION - During treatment, the eye safety filter must be attached to the slit lamp or operating microscope. Failure to use an eye safety filter could result in ocular injury. In addition, some slit lamps and microscopes require an auxiliary eye safety filter to protect persons observing the procedure through an observation tube. To determine if an auxiliary eye safety filter is required, review your slit lamp or microscope operator manual or contact the manufacturer.
Connecting an automatic eye safety filter to the laser

When using an automatic eye safety filter, you must connect the eye safety filter to the laser console using the extension cable that was provided with your eye safety filter.

To connect the eye safety filter to the laser:

1. Insert the eye safety filter plug into the eye safety filter extension cable, as instructed in the appropriate delivery device operator manual.

2. Insert the extension cable plug into the ACC receptacle on the front of the laser console.

Connecting a fixed eye safety filter to the laser

If you are using a fixed eye safety filter, then you must insert an emulation plug into the ACC receptacle.

The LIO (laser indirect ophthalmoscope) delivery device has an integrated eye safety filter. If you are using an LIO, you do not need to insert an emulation plug into the ACC receptacle.
Example of delivery device and eye safety filter connections
(slit lamp and LaserLink shown)
Laser Console Basics

Turning on the laser

1. Insert the key into the keyswitch.

2. Turn the key to the | (on) position.

3. A laser self-test and warmup begin and the display screen will show a line of dashes. The self-test and warmup take approximately one minute. When the warm-up is successfully completed, the display screen will show Stdby 0 to indicate that the laser is in standby mode.

 Depressing the footswitch during warmup will disable the footswitch.

 If any fault conditions are encountered during the laser self-test and warmup, refer to the "Troubleshooting Guide" in the Maintenance chapter.

Restarting the laser

In most cases you will not need to restart the laser. If a condition occurs that requires you to restart the laser:

1. Turn the keyswitch to the (off) position; wait 5 seconds.

2. Turn the keyswitch to the (on) position. The laser begins the routine start-up sequence.
Turning off the laser

Under normal operating conditions, turn the keyswitch to the (off) position to turn off the laser. Remove the key to prevent unauthorized use of the laser.

Emergency off

In an emergency, press the emergency off button on the front of the laser console to immediately turn off the laser.

When the main power cable is connected to the electrical source, some internal circuits remain energized. To de-energize all internal circuits, unplug the main power plug from the wall socket, or turn off the main electrical service (wall circuit breaker).

The emergency stop button turns all power to the laser off, but does not turn off the CPU board or the laser console display. When the button is pressed, an EOFF code will appear in the laser console display, and the system will be in standby. To clear the EOFF, press the emergency stop button. The system will return to standby mode with all of the user settings retained.
Disconnecting the laser

1. Place the laser in standby mode.
2. Turn the keyswitch to the \(\bigcirc\) (off) position.
3. Remove the main power plug from the wall socket.
4. Disconnect the delivery device(s) from the laser. If the delivery device is single-use, dispose of it properly. Otherwise, inspect and clean the delivery device(s), as instructed in the appropriate delivery device operator manual(s).
5. Remove the footswitch from the laser.
6. Disconnect the automatic eye safety filter(s), if used, and remove the eye safety filter extension cable or emulation plug from the laser.
7. Disconnect the external door interlock, if used.
8. Clean the exterior surfaces of the laser, as instructed in the Maintenance chapter.

Moving the laser console

This is a portable laser, so it can be simply picked up and moved from place to place. For transporting long distances, place the laser in the carrying case.
Laser beam integrity check

WARNING - Refer to the appropriate delivery device manual for important, additional information on laser beam integrity specific to that device.

WARNING - When using a fiber delivery device, always inspect the fiber to ensure that it has not been kinked, punctured, fractured, or otherwise damaged. The fiber may be damaged if stepped on, pulled, left lying in a vulnerable position, kinked, or tightly coiled. Do not clamp the fiber with a hemostat or other instruments. If sterile tape is used, always remove the tape before lifting the fiber. A damaged fiber may cause accidental laser exposure or injury to the treatment room personnel or patient and/or cause fire in the treatment room.

Before beginning treatment, verify the aiming beam integrity by performing the following:

1. Ensure that the delivery device is properly fastened to the laser as described in the Connection Instructions section of this manual.

2. Turn on the laser.

3. Verify that E300 (fiber not connected) or E301 (fiber not compatible) IS NOT displayed on the laser console or remote control. If E300 displays, make sure the connector is fastened properly in the fiber port. If E301 displays, connect a compatible delivery device.

4. Set the aiming beam to the highest intensity, as instructed in your laser operator manual.

5. Hold a nonreflective surface, such as a tongue depressor, in front of the probe fiber tip or at the delivery device focal plane. A red spot, the aiming beam, should appear on the flat surface. If the aiming beam is weak, verify that the aiming beam is set to the highest intensity.

WARNING - Do not use the delivery device if the aiming beam is set to the highest intensity and is still weak or not visible; the fiber may be damaged. A damaged fiber may cause accidental laser exposure to the treatment room personnel or patient, and/or cause fire in the treatment room.

6. Set the laser treatment parameters, as instructed in the Setting Treatment Parameters of this chapter.
Laser Console and Remote Control Basics

Laser console display selectors, icons, and displays

The laser console selectors are identified by English labels and icons.
Remote control selectors, icons, and displays

The remote control is labeled with icons. The selectors, icons, and display illuminate when the remote control is connected and the laser is turned on.

Remote control buttons, icons and displays
Laser status and laser emission: ready and standby modes

WARNING - Except during actual treatment, the system must always be in standby mode. Maintaining the system in standby mode prevents accidental laser exposure if the footswitch is inadvertently depressed.

WARNING - Verify that all persons in the treatment room are wearing the appropriate laser safety eyewear before placing the laser in ready mode.

The display at the left of the laser console shows the laser status: standby or ready. On the remote control, either the 🔄 standby or 🔄 ready icons will illuminate.

When the laser is turned on and has finished warming up, it defaults to standby mode. “Stdby 🔄” displays on the laser console as well as the power, duration, and interval default settings. On the remote control, the 🔄 icon is illuminated. In standby mode, the aiming beam is present but the footswitch is disabled and the treatment laser cannot be activated.

Pressing the Mode selector will switch the laser to ready mode. “Ready 🔄” displays on the laser console and the ready icon 🔄 illuminates on the remote control. The system beeps to indicate the start of a two-second delay, after which the treatment beam can be activated by depressing the footswitch.

When the footswitch is depressed, the eye safety filter will engage (if using an automatic eye safety filter) and the treatment beam will be activated. While the treatment beam is being delivered, an audible tone is emitted and if the remote control is used, the laser emission indicator 🗼 illuminates. The Count display will incrementally show the number of pulses delivered.

If the laser is not used for five minutes, the system automatically defaults to standby mode.

If the laser cannot be placed in ready mode, the system beeps, and an error message displays in the top display.
Standby/ready mode selector and Standby icon on laser console

Standby/ready mode selector and icons on remote control
Setting Treatment Parameters

You can set treatment parameters from either the laser console display or the remote control. The system beeps when a maximum available setting is selected.

⚠️ CAUTION - Always verify that the desired treatment parameters are displayed on the laser console and/or remote control before initiating treatment. If there is no change in display values when you press the selectors on the laser console, or if the laser console or remote control appears otherwise erratic, do not use the laser. Contact your local Lumenis representative.

Selecting and verifying the delivery device

Connect the desired delivery device, as described in “Connecting the delivery device.” Verify that the appropriate delivery device icon illuminates on the console display or remote control:

- ✏️ indicates a LaserLink or slit lamp is connected
- ✏️ indicates a probe is connected
- ☓️ indicates an LIO is connected

⚠️ WARNING - Always ensure that a compatible eye safety filter is properly connected for the selected delivery device. Failure to properly use an eye safety filter for those delivery devices that require them can result in serious eye damage. Refer to the appropriate delivery device operator manual for additional compatibility and safety information.

Adjusting the aiming beam intensity

Adjust the aiming beam intensity to the desired level by pressing the aiming beam ✆️ (increase) and ✅️ (decrease) selectors. To adjust the aiming beam intensity from the remote control, press the ✆️ (increase) and ✅️ (decrease) selectors in the ✧ (aiming beam) field.

During some procedures, the aiming beam may obstruct the view of the treatment site while lasing. The aiming beam can be either on or off while lasing. To turn the aiming beam off, press the down selector to the “0” setting.
Aiming beam intensity selector

Adjusting the aiming beam
Setting the power

The maximum available treatment power varies depending on the type of delivery device used, ranging from 1800mW, nominal for slit lamps, to 2500 mW, nominal for Acculite endoprobe.

To set the power from the console, press the Treat Power \(\uparrow\) (increase) and \(\downarrow\) (decrease) selectors until the desired setting displays. To set the power from the remote control, press the \(\uparrow\) (increase) and \(\downarrow\) (decrease) selectors in the \(\text{mW}\) (power) field until the desired setting displays. The system will beep when the maximum available power is selected.

If you are using the PowerEase footswitch, you can also adjust the laser power by pressing the switches on the inside left (decrease power) and right (increase power) of the footswitch housing.

WARNING - Always inspect the optics and delivery device as described in “Connection Instructions” to ensure that the device is clean and undamaged. Never use a device that appears damaged or dirty. Doing so may dangerously reduce the delivered power and result in unintended, adverse tissue effects.

Setting the exposure time (pulse duration)

The pulse duration setting determines the duration of each laser exposure. Exposure time settings range from 0.01 to 3.0 seconds. If you release the footswitch before the selected exposure time has elapsed, laser exposure is interrupted.

To set the pulse duration, press the up or down pulse duration selectors on either the laser console or remote control until the desired value displays.
Setting the pulse duration

Setting Treatment Parameters • 33
Setting the treatment interval

The treatment interval is the time between laser pulses. Single and repeat pulse modes are available. In single pulse mode, the laser delivers a single pulse each time you depress the footswitch. In repeat pulse mode, the laser delivers repeated pulses at a specified interval, from 0.05 s to 1.0 s, until you release the footswitch.

Not all interval settings are available at higher power and exposure time settings. If you attempt to select an interval that is unavailable at the existing power and exposure time settings, the laser changes to meet the duty cycle requirements for that power setting. You must reduce the power or exposure time setting to make available the desired interval. Conversely, if you select the minimum interval for the existing power and exposure time settings, and then you increase the power or exposure time setting, the interval automatically increases to the minimum setting for the new power and exposure time settings.

To set the pulse interval, press the up or down Interval selectors on the laser console display or the remote control until the desired value displays.
Setting Treatment Parameters

Pulse interval display and selectors

Setting the treatment interval
Resetting the pulse counter

The pulse counter displays the total number of treatment pulses delivered since the reset selector was last pressed. The range on the Novus Spectra display is 0-9999 pulses. It can be reset to zero by pressing the Count Reset selector located above the display on the laser console or by pressing the count reset selector underneath the display on the remote control. The pulse count will reset to “0” when the laser is shut down.
Preoperative Instructions

1 Verify that the laser is properly connected, as instructed in “Connection Instructions” in this manual.

2 Verify that the delivery system is properly connected as instructed in the delivery system operator manual. If using an external door interlock, verify that it is also properly connected.

3 Post the “Laser in Use” warning sign outside the treatment room door.

4 Plug the laser main power into the wall socket.

5 Ensure that all persons in the treatment room are wearing the appropriate laser safety eyewear. See “Laser Safety Eyewear” in this manual for detailed laser safety eyewear information.

6 Turn on the laser, as instructed in “Laser Console Display and Remote Control Basics” in this chapter.

7 Perform the aiming beam integrity check, as instructed in “Laser beam integrity check” in this chapter.

WARNING - Lasers generate a highly concentrated beam of light that may cause injury if improperly used. To protect the patient and the operating personnel, the entire laser and the appropriate delivery system operator manuals, including all Safety and Regulatory sections, should be carefully read and comprehended before operation.

WARNING - Do not use the delivery system if the aiming beam is set to high intensity and is weak or not visible; the fiber optic cable may be damaged. A damaged fiber optic cable may cause accidental laser exposure or injury to the treatment room personnel or patient, and/or fire in the treatment room.

CAUTION - Before using the laser, always verify that the displays on both the laser console and the remote control are properly working and are consistent with each other.
Intraoperative Instructions

WARNING - Incorrect treatment settings can cause serious tissue damage. Therefore, it is recommended that you use the lowest acceptable treatment settings until you are familiar with the instrument’s capabilities. Use extreme caution until you thoroughly understand the biological interaction between the laser energy and tissue.

1. Set the treatment values, as instructed in this manual, and verify that the desired settings are displayed on the control panel.

2. Ensure that the aiming beam is visible and position it on the target tissue.

3. Place the laser in ready mode.

4. Depress the footswitch to deliver the treatment beam to the tissue. The (laser emission) icon will illuminate on the remote control, and the system emits a beep.

 If surgery must be interrupted, place the laser in standby mode to disable the footswitch.
Postoperative Instructions

1. Place the laser in the standby mode.
2. Turn off the laser, as instructed in “Laser Console Basics” in this manual.
3. Unplug the laser and coil the power cable to prevent damaging it.
4. Unplug the footswitch and coil the cable to prevent damaging it.
5. If desired, disconnect the delivery device disconnect and store the laser and delivery device components, as instructed in “Laser Console Basics” in this chapter. Refer to the delivery device operator manual for additional postoperative instructions specific to the delivery system.
6. Disconnect the external door interlock (if used).
7. Clean the exterior surfaces of the laser, as instructed in the Maintenance section of this manual.
Maintenance

Overview

- Troubleshooting Guide 43
- User Maintenance 47
- Electrical Requirements 48
- Replacing the Fuses 49
- Specifications 50
- Calibration Procedure 52
- Warranty Information 54
- Decontamination of Returned Equipment 54
Troubleshooting Guide

If the instrument fails to operate properly, this troubleshooting guide will help you to locate and correct the malfunction. First, please check for the following items. If none of these solutions remedies the problem, consult the troubleshooting table that follows. Error codes appear on the laser console display or on the remote control display screen.

Laser console electrical

Verify that the laser is on and properly connected to an electrical service outlet.

Delivery system connection

Verify that the delivery system is properly connected.

External door interlock

If the external door interlock is used in conjunction with a remote switch, verify that the external door interlock plug is inserted in the external door interlock receptacle. Close the interlocked door.
<table>
<thead>
<tr>
<th>Problem or Error Code</th>
<th>Probable Cause</th>
<th>Suggestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>System does not turn on. Control screen does not illuminate.</td>
<td>The laser is not plugged in.</td>
<td>Plug the power cord into the laser and into an appropriate outlet.</td>
</tr>
<tr>
<td></td>
<td>The building power (main electrical service) is turned off.</td>
<td>Turn on the building power.</td>
</tr>
<tr>
<td></td>
<td>The electrical outlet is defective.</td>
<td>Use another outlet or have the outlet professionally tested and, if appropriate, repaired</td>
</tr>
<tr>
<td></td>
<td>The fuse is blown.</td>
<td>Replace fuses.</td>
</tr>
<tr>
<td>No treatment beam output although the aiming beam operates properly.</td>
<td>There is an internal laser system failure.</td>
<td>Contact your local Lumenis representative.</td>
</tr>
<tr>
<td></td>
<td>The footswitch may be defective.</td>
<td>With the laser in ready mode, verify that the laser emission icon appears (remote control) or that a tone (laser console) occurs when the footswitch is depressed. If either the tone or the icon does not appear, contact your local Lumenis representative.</td>
</tr>
<tr>
<td>No treatment beam output and no aiming beam. Control screen displays and indicators are normal.</td>
<td>There is an internal laser system failure.</td>
<td>Contact your local Lumenis representative.</td>
</tr>
<tr>
<td>Treatment beam and aiming beam are out of alignment.</td>
<td>The laser system is internally misaligned.</td>
<td>Contact your local Lumenis representative.</td>
</tr>
<tr>
<td>Inadequate or no aiming beam.</td>
<td>The aiming beam is off or at a low setting.</td>
<td>Adjust the aiming beam intensity. If you are unable to fix the problem, contact your local Lumenis representative.</td>
</tr>
<tr>
<td></td>
<td>The delivery device optics are dirty.</td>
<td>Verify that the delivery device optics are clean, as instructed in your delivery device operator manual.</td>
</tr>
<tr>
<td>Problem or Error Code</td>
<td>Probable Cause</td>
<td>Suggestion</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Inadequate treatment beam or tissue effect.</td>
<td>The treatment or aiming beam is not properly aligned.</td>
<td>⇒ See “Treatment beam and aiming beam are out of alignment” below.</td>
</tr>
<tr>
<td></td>
<td>The delivery device optics are dirty.</td>
<td>⇒ Verify that the delivery device optics are clean, as instructed in your delivery device operator manual.</td>
</tr>
<tr>
<td></td>
<td>The delivery device is not properly connected.</td>
<td>⇒ Verify that the delivery device is properly connected, as instructed in your delivery device operator manual.</td>
</tr>
<tr>
<td>E200</td>
<td>The footswitch cable is not properly connected to the laser console, or the footswitch cable is defective.</td>
<td>⇒ Ensure that the footswitch is properly connected to the laser console and that the footswitch cable is not damaged. If the condition continues, restart the laser system. If the condition persists, contact your local Lumenis representative.</td>
</tr>
<tr>
<td>E300</td>
<td>The fiber is not properly connected.</td>
<td>⇒ Ensure that the fiber is properly connected.</td>
</tr>
<tr>
<td>E301</td>
<td>The fiber is not compatible.</td>
<td>⇒ Connect a compatible fiber.</td>
</tr>
<tr>
<td>E400</td>
<td>The delivery device is not properly connected.</td>
<td>⇒ Ensure that accessory cords are properly connected.</td>
</tr>
<tr>
<td>E401</td>
<td>The delivery device is not compatible.</td>
<td>⇒ Connect a compatible delivery device. Consult your delivery device and laser system manual for compatibility information.</td>
</tr>
<tr>
<td>EOFF</td>
<td>The emergency stop button 🚫 is depressed.</td>
<td>⇒ Release the emergency stop button; the system will return to standby mode.</td>
</tr>
<tr>
<td>ILOC</td>
<td>The remote interlock has been activated by the opening of an interlocked door or an improperly connected interlock plug.</td>
<td>⇒ Close the interlocked door or connect the interlock plug. Press the Mode button to select ready mode.</td>
</tr>
<tr>
<td>F100</td>
<td>The physician filter is not connected.</td>
<td>⇒ Connect physician filter.</td>
</tr>
<tr>
<td>F101 or 102</td>
<td>The physician filter is not functioning properly.</td>
<td>⇒ Physician filter needs to be repaired or replaced.</td>
</tr>
<tr>
<td>F201 or 202</td>
<td>The footswitch is not functioning properly.</td>
<td>⇒ Replace or repair footswitch.</td>
</tr>
<tr>
<td>Problem or Error Code</td>
<td>Probable Cause</td>
<td>Suggestion</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>F203</td>
<td>The footswitch has been depressed while trying to enter ready mode.</td>
<td>⇨ Release the footswitch. Press the ready button to continue, ensuring that the footswitch is not depressed.</td>
</tr>
<tr>
<td>F204</td>
<td>Footswitch error</td>
<td>⇨ First check footswitch connections and cord. If the condition persists, contact your local Lumenis representative.</td>
</tr>
<tr>
<td>F402</td>
<td>Delivery device error</td>
<td>⇨ First, remove and inspect the delivery device as instructed in your delivery device operator manual; then, verify that the device is properly connected as instructed. If the condition persists, contact your local Lumenis representative.</td>
</tr>
<tr>
<td>E501</td>
<td>The laser detected a lower level of energy than the level selected by the user.</td>
<td>⇨ Turn off the system for five seconds, then restart. If the condition persists, contact your local Lumenis representative.</td>
</tr>
<tr>
<td>E502</td>
<td>The laser detected a higher level of energy than the level selected by the user.</td>
<td>⇨ Turn off the system for five seconds, then restart. If the condition persists, contact your local Lumenis representative.</td>
</tr>
<tr>
<td>E701</td>
<td>The laser detected an over temperature condition.</td>
<td>⇨ Turn off the system for 1 minute, then restart. If the condition persists, contact your local Lumenis representative.</td>
</tr>
<tr>
<td>F803</td>
<td>Power interlock error</td>
<td>⇨ Turn the laser on and off. If the condition persists, contact your local Lumenis representative.</td>
</tr>
<tr>
<td>F503-F505, F601-F604, F702-F704, F901-F909, CA01</td>
<td>Internal system operating errors</td>
<td>⇨ Contact your local Lumenis representative.</td>
</tr>
</tbody>
</table>
User Maintenance

Annual laser maintenance

Preventative maintenance, safety, power, and calibration checks should be performed annually by a Lumenis-certified service engineer to ensure proper laser performance.

Laser repair

All laser repairs should be performed by a Lumenis-certified service engineer. For training and information, contact your local Lumenis representative.

Clean the external surfaces of the laser console

Use a cloth dampened with a noncaustic cleaning solution, such as soap and water, isopropyl alcohol, or a “hospital-grade” disinfectant, to wipe the external surfaces of the laser console. Dry with a clean cloth or allow to air dry.

Clean the laser control screen

Use a soft cloth to apply antistatic glass or plastic cleaner to the laser control screen.

CAUTION - Do not spray or pour cleaning agents directly on the laser console or control screen. You may damage the console, screen, and laser system electronics.

Water utilities

No water utilities are required for this laser. It has a self-contained cooling system.
Electrical Requirements

The Novus Spectra laser is designed to meet UL2601-1, IEC 60601-1-1, 60601-1-2, 60601-1-4, 60601-2-22, and 60825-1, and CSA 22.2 No. 601 requirements. The laser is available in one electrical configuration with a universal, 100–240 V, 5.0-A power input.

The supplied hospital-grade power cord should be used with a standard 15-A wall outlet. The power cord shipped with the system will vary according to local electrical requirements.
Replacing the Fuses

1. Ensure that the keyswitch is in the off position.

2. Unplug the main power cable from both the wall socket and the main power receptacle on the rear of the laser console.

3. Locate the fuse holder directly below the main power receptacle.

4. Unlock and pull out the fuse holder by inserting a small, insulated flathead screwdriver into the slot on the fuse holder cover.

5. Replace the fuses as follows: two fuses rated 250 V, 5A, Type T, Slo Blo (5 mm × 20 mm)

6. Reinsert the fuse holder.
Specifications

Specifications are subject to change without notice.

<table>
<thead>
<tr>
<th>Novus Spectra Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment beam</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Wavelength</td>
</tr>
<tr>
<td>Power output</td>
</tr>
<tr>
<td>Duty cycle</td>
</tr>
<tr>
<td>Pulse duration</td>
</tr>
<tr>
<td>Pulse interval</td>
</tr>
<tr>
<td>Pulse counter</td>
</tr>
<tr>
<td>Laser beam spot size</td>
</tr>
<tr>
<td>Illumination</td>
</tr>
<tr>
<td>CDRH classification</td>
</tr>
<tr>
<td>European MDD Laser Classification</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aiming beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Power</td>
</tr>
<tr>
<td>CDRH classification</td>
</tr>
<tr>
<td>European MDD laser classification</td>
</tr>
<tr>
<td>Principal output</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air cooled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
</tr>
<tr>
<td>Frequency</td>
</tr>
<tr>
<td>Wall outlet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental requirements (operating)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum altitude</td>
</tr>
<tr>
<td>Operating temperature</td>
</tr>
<tr>
<td>Maximum humidity</td>
</tr>
</tbody>
</table>
Novus Spectra Laser

Environmental requirements (nonoperating)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum altitude</td>
<td>Standard commercial shipping altitude</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-10 °C to 55 °C (14 °F to 131 °F)</td>
</tr>
<tr>
<td>Maximum humidity</td>
<td>90% at 55 °C (131 °F) noncondensing</td>
</tr>
</tbody>
</table>

Physical characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>15.2 cm (6 in.)</td>
</tr>
<tr>
<td>Width</td>
<td>25.4 cm (10 in.)</td>
</tr>
<tr>
<td>Depth</td>
<td>35.6 cm (14 in.)</td>
</tr>
<tr>
<td>Weight</td>
<td>8 kg (17 lb)</td>
</tr>
<tr>
<td>Power cable length</td>
<td>4.1 m (13.5 ft) U.S.</td>
</tr>
<tr>
<td>Footswitch cable length</td>
<td>4.6 m (15 ft)</td>
</tr>
<tr>
<td>Latex</td>
<td>This product is latex free</td>
</tr>
</tbody>
</table>

Laser safety eyewear

Refer to “Laser Safety Eyewear” in the Safety and Regulatory section of this manual for detailed laser safety eyewear information.

Compatible delivery systems

Slit lamp delivery systems for Zeiss and Haag Streit style slit lamps
Laser indirect ophthalmoscopes (LIO) for Keeler and Heine
Acculite Endoprobe
EndoOto probes
Calibration Procedure

Regulatory agencies require that manufacturers of US FDA CDRH Class II and IV, and European IEC 60825 Class 2 and 4 medical lasers supply their customers with power calibration instructions.

Calibration must be performed by an engineer or technician qualified to work on energized electronic laser equipment. Questions regarding this procedure should be referred to your local Lumenis representative.

Disclaimer warning

Calibration is a service procedure to be done only by Lumenis-certified Service Engineers or customers who have taken and passed a Lumenis Service Certification Training course. Adjustment by anyone other than a trained Lumenis Service Engineer or a certified customer voids any existing manufacturer’s warranty on the instrument. Contact your local Lumenis representative for information on service training courses or to purchase a service manual for the laser. It is company policy not to distribute service tools outside of the Lumenis Service Organization. Possession of service instructions or tools does not authorize repair or modification of a Lumenis instrument by uncertified personnel.
Calibration instructions

The following equipment is required for calibration:

- Power meter (Ophir or equivalent)
- Potentiometer adjustment tool
- Digital voltmeter (Fluke 77 or equivalent)

⚠️ WARNING - As a precaution against accidental exposure to the output beam or its reflection, personnel checking or adjusting calibration should wear specially tinted laser safety eyewear. For further information on laser safety eyewear, see the Laser Safety Eyewear section of this manual.

To calibrate the laser:

1. Ensure that the keyswitch is in the (off) position.
2. Open the top protective covers of the laser console.

⚠️ WARNING - Opening the laser console protective covers will expose the user to the laser resonator and possible laser radiation. Only Lumenis-certified service technicians shall work inside the console.

3. On the CPU board (bottom PCB), slide switches 1 and 2 of SW2 to the open position.
4. Turn the keyswitch to the (on) position, slide SW2 switches 1 and 2 to the closed position. The laser is now in calibration mode. The display flashes an upper case “C”.
5. Select 1000 mW power, 50 ms exposure time, and a 50 ms interval time.
6. Attach a digital voltmeter across Main and Safe test points. Select DC volts, auto-ranging.
7. Remove the CPU board and place a power meter in front of the fiber port.
8. Select ready mode, then depress the footswitch. Adjust the Main_Gain pot on the Analog Board (top PCB) until the power meter reads 500 mW average or 1000 mW peak. Adjust the Safe_Gain pot until the voltmeter reads 0 V ±5 mV.
9. Turn the laser off then back on. Allow the laser to perform its self-test. The laser should go into standby mode without any error codes displayed on the control screen or remote control.
Warranty Information

For specific and detailed warranty information for this instrument, please refer to the first page of your purchase “Agreement” and the last page of the “Terms and Conditions of Sale.”

Decontamination of Returned Equipment

To comply with United States postal and transportation law, equipment shipped to Lumenis U.S. offices for repair or return must be properly decontaminated with a chemical germicide that is commercially available and cleared for use as a “Hospital Disinfectant.” To ensure that all equipment has been properly decontaminated, a signed Decontamination Certificate (provided at the back of this manual) must be enclosed in the package, or Lumenis will assume that the product is contaminated and will assess the customer with cleaning costs.

Any decontamination inquiries should be directed to the Lumenis U.S. service offices.
Safety and Regulatory

Overview

- Introduction 57
- Laser Safety Eyewear 58
- Additional Ocular Protection 61
- Additional Safety Considerations 62
- Regulatory Compliance 64
Introduction

Users must take precautions to prevent exposure of laser energy to the eyes and skin from either direct or diffusely reflected laser beams, except as a therapeutic application. Additional precautions must be taken to prevent fire, electrical injury, and explosion.

Lumenis does not make recommendations regarding the practice of medicine. Laser treatment parameters are provided as a guide. Individual treatment should be based on clinical training, clinical observation of laser-tissue interaction, and appropriate clinical endpoints.
Laser Safety Eyewear

Laser safety eyewear is routinely required with most lasers. When using the laser system, the Laser Safety Officer should determine the need for safety eyewear based on the Maximum Permissible Exposure (MPE), Nominal Hazard Zone (NHZ), the Nominal Ocular Hazard Distance (NOHD), and the optical density (OD) for each of the available laser emissions and the configuration of the treatment room (usually within the controlled area). For additional information, refer to ANSI Z136.1-1993, ANSI Z136.3-1996, or European Standard EN 60825: 1992, Appendix A.

The following formula was used to calculate the worst case NOHD for Lumenis Novus Spectra lasers and compatible delivery systems.

\[
\text{NOHD} = Z + \frac{1}{\theta} \sqrt{\frac{4}{\pi} \frac{\Phi}{\text{MPE} \cdot \text{Pf}}} \cdot a^2
\]

where,

- \(Z\) = the distance of the beam waist from the laser system;
- \(a\) = the beam waist diameter \((1/e^2\) of axial irradiance for gaussian beam);
- \(\theta\) = minimum full angle beam divergence \((1/e^2\) of axial irradiance for gaussian beam);
- \(e\) = 2.7182818285, the base of natural logarithms;
- \(\Phi\) = maximum energy of one laser pulse or maximum CW laser power;
- \(\text{Pf}\) = the profile correction factor \((1\) for uniform profile or \(2\) for gaussian irradiance profile);
- \(\text{MPE}\) = Maximum Permissible Exposure, in energy density units \((\text{energy per unit area})\), or power density units \((\text{power per unit area})\);
- \(\text{NOHD}\) = the Nominal Ocular Hazard Distance \((\text{measured from laser aperture})\);
- = the distance required to reduce the energy density or power density to the MPE.
Using this approach we derive the following values:

<table>
<thead>
<tr>
<th></th>
<th>(\theta) (rad)</th>
<th>(\Phi) (W)</th>
<th>(\text{MPE}) (W/cm(^2))</th>
<th>(\text{Pf})</th>
<th>(a) (cm)</th>
<th>(Z) (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaserLink HS</td>
<td>0.050</td>
<td>2.5</td>
<td>0.00255</td>
<td>1</td>
<td>0.020</td>
<td>5.7</td>
</tr>
<tr>
<td>LaserLink Z</td>
<td>0.041</td>
<td>2.5</td>
<td>0.00255</td>
<td>1</td>
<td>0.025</td>
<td>9.8</td>
</tr>
<tr>
<td>LIO</td>
<td>0.022</td>
<td>2.5</td>
<td>0.00255</td>
<td>2</td>
<td>0.102</td>
<td>42</td>
</tr>
<tr>
<td>Acculite</td>
<td>0.140</td>
<td>2.5</td>
<td>0.00255</td>
<td>2</td>
<td>0.020</td>
<td>0</td>
</tr>
</tbody>
</table>

which results in a \textit{worst case} NOHD of:

<table>
<thead>
<tr>
<th></th>
<th>NOHD (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaserLink HS</td>
<td>7.13</td>
</tr>
<tr>
<td>LaserLink Z</td>
<td>8.72</td>
</tr>
<tr>
<td>LIO</td>
<td>23.15</td>
</tr>
<tr>
<td>Acculite</td>
<td>3.57</td>
</tr>
</tbody>
</table>
All personnel who are within the NOHD are considered to be within the controlled area and shall wear eye protection with a *minimum* optical density (OD) of:

<table>
<thead>
<tr>
<th>Safety Eyewear</th>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaserLink HS</td>
<td>3.41</td>
</tr>
<tr>
<td>LaserLink Z</td>
<td>3.41</td>
</tr>
<tr>
<td>LIO</td>
<td>3.41</td>
</tr>
<tr>
<td>Acculite</td>
<td>3.41</td>
</tr>
</tbody>
</table>

Laser safety eyewear must also be resistant to physical damage or photobleaching resulting from laser exposure as per ANSI Z136.1-1993, section 4.6.2 and Appendix C. For users who must comply with EN 207, the safety eyewear must have a protection class of:

<table>
<thead>
<tr>
<th>Safety Eyewear</th>
<th>Protection Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaserLink HS</td>
<td>L5</td>
</tr>
<tr>
<td>LaserLink Z</td>
<td>L5</td>
</tr>
<tr>
<td>LIO</td>
<td>L5</td>
</tr>
<tr>
<td>Acculite</td>
<td>L5</td>
</tr>
</tbody>
</table>

Depending on the procedure, the physician must protect the patient’s eyes with either laser safety eyewear or one of the following items moistened with a nonflammable solution: thick cloth, eye pads, or gauze 4 x 4’s. For periorbital treatment, the physician must protect the patient with dulled, metal eye shields.

In addition to providing the required laser safety eyewear, take the following steps to secure the treatment room, or the controlled area:

1. To alert personnel before they enter the controlled area, place a warning sign on the outside of the treatment room door when the laser is in use.

2. Close the treatment room door during operation of the laser.

3. External door interlocks that automatically disable the laser when the treatment room door is opened may be installed.

A blocking barrier, screen, or curtain capable of blocking or filtering the laser beam could be placed to create a controlled area inside a large treatment room. The barrier should be made of material that can withstand the power of the treatment beam for the maximum exposure time, relative to the configuration of the controlled area and the treatment parameters for the specific medical application.
Additional Ocular Protection

WARNING - Always verify that the delivery device is properly connected to the laser. An improper connection may result in an inadvertent secondary laser beam. Severe eye or tissue damage could occur.

WARNING - Never substitute prescription eyewear for the appropriate laser safety eyewear, as severe eye damage could occur. Prescription eyewear can concentrate the laser light to the eye and/or can be shattered by a high power density beam, possibly causing severe eye damage.

WARNING - Severe and irreversible eye damage and scarring may occur from direct or indirect exposure to the treatment beam. The predominant ocular structures at risk are dependent on the laser wavelength in use. In general, visible and near-infrared wavelengths are most damaging to the retina, while ultraviolet or infrared wavelengths are most damaging to the cornea and sclera. Severity of injury depends on how concentrated or diffused the treatment beam is and the length of exposure. A thorough understanding of the specific ocular risks and safety precautions for each laser wavelength is necessary to ensure the safety of the patient and operating personnel.

WARNING - Never look directly into any optical lens, except for therapeutic purposes, nor any optical fiber, probe, or laser system aperture while the laser is energized. Severe eye damage could occur. Turn off the laser before inspecting any delivery system or laser components.
Additional Safety Considerations

Protecting nontarget tissues

WARNING - When using a fiber optic delivery device, always inspect the fiber optic cable to ensure that it has not been kinked, punctured, fractured, or otherwise damaged. The fiber optic cable may be damaged if stepped on, pulled, left lying in a vulnerable position, kinked, or tightly coiled. Do not clamp the cable with a hemostat or other instruments. If sterile tape is used, always remove the tape before lifting the cable. A damaged fiber optic cable may cause accidental laser exposure or injury to the treatment room personnel or patient, and/or fire in the treatment room.

WARNING - Never deliver the treatment beam to the target tissue if the aiming beam is not visible; the fiber optic cable or the delivery device may be damaged. A damaged cable or device may cause accidental laser exposure to the treatment room personnel or patient, and/or fire in the treatment room.

WARNING - Except during actual treatment, the laser must always be in standby mode. Maintaining the laser in standby mode prevents accidental laser exposure if the footswitch is inadvertently depressed.

WARNING - Unintended tissue damage can occur due to incorrect energy, repetition rate, exposure duration, or power application. The lowest energy, repetition rate, exposure duration, and power settings that are effective for the intended application should be used until familiar with the instrument's capabilities. Extreme caution should be employed until you understand the biological interaction between the laser energy and tissue.

WARNING - Laser beam integrity checks are extremely important for the safe operation of your laser equipment. Do not use the laser or delivery system if aiming and treatment beams are not coincident; contact your local Lumenis representative. Misalignment of aiming and treatment beams may result in laser exposure to nontarget tissues and possible injury.

WARNING - To prevent accidental laser discharge, always place the laser in standby mode before connecting the delivery system.

WARNING - Never place hands or other objects in the path of the laser beam. Severe burns could occur.

WARNING - Activate the laser only when the aiming beam is directed at the targeted lesion or structure and there is a clear view of the treatment site.

CAUTION - Only the person directing the aim of the laser beam should have access to the laser footswitch. Use caution depressing the laser footswitch when it is in proximity to footswitches for other equipment. Make sure the footswitch depressed is the correct one to avoid accidental laser exposure.
Fire hazards

WARNING - Do not use this device in the presence of flammables or explosives, such as volatile anesthetics, alcohol, volatile surgical preparation solutions, and similar substances. An explosion or fire could occur.

WARNING - The treatment beam can ignite most nonmetallic materials. Use fire retardant drapes and gowns. The area around the treatment site can be protected with towels or gauze sponges moistened with sterile saline solution or sterile water. If allowed to dry, protective towels and sponges can increase the potential fire hazard. A UL-approved fire extinguisher and water should be readily available.

Electrical hazards

WARNING - Never open the laser console protective covers. Opening the covers will expose personnel to high voltage components and possible laser radiation. Only Lumenis-certified service technicians shall work inside the console.

WARNING - To avoid electrical shock, the area around the laser and footswitch should be kept dry. Do not operate the laser if any of the cords are faulty or frayed. The laser should undergo routine inspection and maintenance per Lumenis manufacturer’s recommendations and institutional standards.
Regulatory Compliance

Lumenis lasers and delivery systems comply with 21 CFR Chapter I, Subchapter J, as administered by the Center for Devices and Radiological Health of the US Food and Drug Administration (FDA).

CE-labeled devices comply with all appropriate performance standards as specified in Annex II of the European Medical Device Directive MDD 93/42/EEC.

⚠️ **CAUTION** - US law restricts this device to sale by or on the order of a physician.

⚠️ **CAUTION** - Lumenis medical lasers and laser delivery systems are intended solely for physicians trained in the use of these instruments.

⚠️ **CAUTION** - Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous laser radiation exposure.

⚠️ This package conforms to the conditions and limitations specified in US federal regulations, title 49 CFR 173.426 for radioactive material, excepted package-articles manufactured from natural thorium, UN 2910.
Emergency stop pushbutton

The laser has an emergency stop pushbutton that immediately turns off the laser.

The emergency stop button turns off all power to the laser off, but does not turn off the CPU board or the laser console display. When the button is pressed, an EOFF code will appear in the laser console display, and the system will be in standby. To clear the EOFF, release the emergency stop button. The system will return to standby mode with all of the user settings retained.

Key lock switch

To prevent unauthorized use, the laser can only be turned on with the master key, the key can only be removed when the laser is turned off, and the laser only operates when the key is inserted into the keyswitch. When the keyswitch is turned to the on position, the laser power-up sequence is initiated.

Location of controls

Operation and adjustment controls are located so that the user need not be exposed to laser radiation during laser operation or adjustment.

Protective housing

The laser has a protective housing that prevents unintended human access to laser radiation above Class I limits. The housing must only be opened by a Lumenis-certified technician.

External door interlock

An external door interlock receptacle and plug are provided to disable the laser if the treatment room doors are opened while the laser is in ready mode. Refer to the Laser Safety Eyewear section of this manual for additional information.

Safety interlocks

The protective housing is not designed to be removed by the user during operation or maintenance. Therefore, the laser does not have, and is not required to have, any safety interlocks within the meaning of US FDA 21 CFR, Section 1040 or European EN 60825-1. However, the protective housing cannot be easily opened without special tools.
Manual reset

If laser emission is externally interrupted during treatment by remote interlock activation, the laser will automatically go into standby and the safety shutter will revert to a closed position. To resume treatment, reset the laser by placing the laser in ready mode.

If laser emission is interrupted during treatment by main electrical power loss, the laser system will automatically turn off. To resume treatment after an electrical power loss, the system must be manually restarted by rotating the keyswitch to OFF \(\text{OFF} \) then ON \(\text{ON} \).

Electronic fault detection circuitry

If the electronic system detects a fault condition, laser exposure cannot occur. The laser power supply is turned off, the safety shutter is closed, and the footswitch is disabled.

Some fault conditions may be cleared by the operator. Refer to the Troubleshooting Guide in this manual for additional information.

Safety shutter

The laser includes an electronic safety shutter that prevents unintentional laser emission. The safety shutter opens only when the laser is in ready mode. The safety shutter remains closed when the system is turned off, during self-test at system turn on, when the system is placed in standby mode, or when the safety monitor detects a fault.

Laser emission indicators

The Ready mode illuminates on the laser console and the Ready icon \(\text{Ready} \) illuminates on the remote control screen when the system is in ready mode. These indicators alert the user that the system is able to emit laser radiation. Before treatment beam delivery, the system emits a low-pitched tone to indicate the beginning of a two-second delay until laser radiation is accessible. An audible tone occurs during treatment beam delivery, and the laser emission indicator \(\text{Laser} \) on the remote control screen illuminates. The indicators continue the duration of treatment beam emission.
Location of regulatory and system labels

As required by national and international regulatory agencies, appropriate labels have been mounted in specified locations.

Locations of regulatory compliance labels
Certification and identification label

CE mark, TUV, Caution, and European distributor label

Danger label

Regulatory compliance labels—laser console
Front panel regulatory labels

Laser aperture label
(Laser aperture at end of fiber optic)

Emergency stop

Delivery device receptacle

Remote interlock

Footswitch

Remote control

Protected earth plug

IP 20

Ingress protection

Attention read manual
(Read and comprehend the operator manual before use)

Fuse rating label
replace fuse as marked

Back panel regulatory labels
Safety and Regulatory

- **Treat Power**
- **Pulse Duration**
- **Aiming beam**

- **Pulse interval**
- **Count reset**
- **Illumination**

- **Ready**
- **Standby**
- **Laser emission indicator**

- **LIO**
- **Slit lamp icon**
- **Probe icon**

Remote control icons
Indications for Use

Overview

- General Information 73
- Ophthalmic Applications of the Laser 83
- Posterior Segment Laser Procedures 84
- Anterior Segment Laser Procedures 90
- Ophthalmology References 93
- Otologic Applications of the Laser 95
- Delivery Devices and Accessories 99
General Information

WARNING - The Indications for Use and Safety and Regulatory sections of this operator manual should be carefully read and comprehended in their entirety before attempting to use the laser system. Particular attention should be given to all cautions and warnings pertaining to the safe use of the laser.

The use of a laser instrument for an application is at the physician’s discretion except in cases where the indication has been contraindicated.

Successful clinical use of the laser depends upon the interaction of a number of variables. These variables include the type of tissue, the amount of tissue pigmentation, spot size, delivered power, pulse duration, and incidence angle of the laser beam onto the target tissue.

Laser light is preferentially absorbed by pigments within tissue and causes an increase in tissue temperature. Laser light is also absorbed by nonpigmented tissues, but the absorption coefficient is less than that of pigmented tissue. The wavelength typically penetrates pigmented tissue to a depth of approximately 0.8 to 1.1 mm (around 1000 µm). Light from the laser is also scattered in tissue. This scattered light causes a lateral spread of the laser energy. The following equation describes the intensity of laser light in tissue, at a depth x into the tissue, along the incident ray.

$$ I = I_0 e^{-\sqrt{\alpha^2 + 2\beta x}} = I_0 e^{-\mu x} \quad \text{Equation 1} $$

where α is the absorption coefficient [cm$^{-1}$], β is the scatter coefficient [cm$^{-1}$], I is the intensity at a distance x into the tissue, I_0 is the intensity at the tissue surface, and e is the base of the Napierian log. The term

$$ \sqrt{\alpha^2 + 2\alpha \beta} = \mu \quad \text{Equation 2} $$

is the wavelength-dependent attenuation coefficient [cm$^{-1}$].
Some values of α, β, and μm for several tissue types are shown in the following table:

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Absorption Coefficient α [cm(^{-1})]</th>
<th>Scatter Coefficient β [cm(^{-1})]</th>
<th>Attenuation Coefficient μm [cm(^{-1})]</th>
<th>Depth of Penetration [(\mu m)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Dermis (In Vitro)</td>
<td>8</td>
<td>83</td>
<td>37.4</td>
<td>267</td>
</tr>
<tr>
<td>Blood Thrombus</td>
<td>110</td>
<td>13</td>
<td>122.3</td>
<td>82</td>
</tr>
<tr>
<td>Fibrous Plaque</td>
<td>18</td>
<td>19</td>
<td>31.7</td>
<td>315</td>
</tr>
<tr>
<td>Vessel Wall</td>
<td>11</td>
<td>11</td>
<td>19</td>
<td>526</td>
</tr>
</tbody>
</table>

Table 1: Absorption coefficient, scatter coefficient, attenuation coefficient, and depth of penetration for some representative tissue types.
Tissue effects

Tissue effects are caused by the absorption of electromagnetic laser radiation and its conversion to heat. Diffusion of heat through the tissue depends on the thermal properties of the irradiated material. The pulse train may also be optimized for the desired tissue effect.

Determining the irradiance required to elicit a specific response at tissue is extremely complex and depends on several factors. Among these factors are the following:

- The reflection coefficient at the air or water interface with target tissue
- Pigmentation of the target tissue
- Laser wavelength
- Laser pulse duration
- Blood flow
- Other factors that may influence the heat equation

This list is not intended to be all inclusive. A “cookbook” approach to surgery and tissue effects is not recommended. General guidelines can, however, be suggested. The guidelines suggested are intended to be conservative. Before setting out guidelines for each of the tissue effects of interest, we must define these effects:

Definitions

Coagulation Heating of tissue sufficient to cause denaturation of proteins

Vaporization Rapid heating sufficient to cause boiling of intracellular water or combustion of cellular components, resulting in bulk tissue loss

Cutting Fine line, localized vaporization of tissue

The approximate irradiance required for each of these effects is given in the following Table:

<table>
<thead>
<tr>
<th>Desired Effect</th>
<th>Approximate Required Irradiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating</td>
<td>> 10 W/cm²</td>
</tr>
<tr>
<td>Coagulation</td>
<td>100-500 W/cm²</td>
</tr>
<tr>
<td>Vaporization</td>
<td>> 1000 W/cm²</td>
</tr>
<tr>
<td>Cutting</td>
<td>> 1000 W/cm²</td>
</tr>
<tr>
<td>Rapid Cutting</td>
<td>> 5000 W/cm²</td>
</tr>
</tbody>
</table>

Table 2: Approximate irradiance required for specific tissue effects
Increasing the irradiance will limit lateral thermal damage, but not without a trade-off. Hemostasis will not be as effective at higher irradiance, because lateral thermal damage and, therefore, coagulation around the laser impact site are reduced.

For vaporization of soft tissue, irradiance of more than 1000 W/cm² is recommended. For applications where more finely controlled removal of tissue is desired, single pulse mode or repetitive pulse mode with a time interval is preferable to continuous wave laser energy. Refer to the Operation section of this manual for detailed information on how to adjust settings on your laser. The surgeon may optimize tissue absorption by controlling the power setting, pulse duration, spot size, and pulse interval. Tissue changes occur along a predictable continuum as the temperature increases.

Each phase of tissue change has a visual endpoint, enabling the surgeon to stop treatment at the desired level. Each phase serves different therapeutic goals. These phases of tissue change are described and summarized in Table 3.

Phase 1 Heating of the tissue from 43° to 50°C may allow for the uncoiling and annealing of collagen helices so that opposed edge tissues may be fused by reforming covalent bonds. Below 45°C, there is little cell damage. Above 45°C, enzymes degrade. These changes may or may not be reversible. A faint whitening signals the start of the next phase.

Phase 2 As heating proceeds above 50°C, protein denaturation begins. As temperatures rise above 60°C, extracellular proteins and collagen fibers begin to denature. Such loss of structure is seen histologically as coagulation injury or hypereosinophilia of the tissue. Beyond 60°C, immediate or eventual cell death is inevitable. Tissue coagulation should be complete when the surgeon notes a uniformly white (or grey) tissue color, blood and lymph coagulation, or necrosis. Phase 2 is complete when the surgeon observes the start of shrinkage.

Phase 3 The tissue slowly dries out and shrinks. As the temperature reaches 90° to 100°C, the underlying collagen and elastin structures begin to degrade. Caution should be exercised not to damage deeper or hidden structures (e.g. perforation). This phase is useful for shrinking tumors away from vital structures.

Phase 4 As heating proceeds beyond 100°C, water begins to boil, leaving behind vacuoles within the remaining proteinaceous structure of the coagulated tissue. Vacuoles are a definite indication of temperatures in excess of 100°C. As temperatures rise above 125°C, complete oxidation of protein and lipids occurs, leaving behind carbon particles. As
tissue turns black, temperatures rise fast because scattering stops and absorption proceeds rapidly (black absorbs all visible wavelengths). Charring is the visual signal that the final phase, tissue ablation, is about to begin.

Phase 5 Carbonization or charring of the tissue surface indicates high-temperature processes. The surgeon can see the tissue being vaporized as a plume of gas and smoke. Ablation temperatures for calcified tissues may exceed 500°C.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Tissue Temperature</th>
<th>Tissue Effect</th>
<th>Surgeon’s Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43-50°C</td>
<td>Temperature Increase</td>
<td>No visible change</td>
</tr>
<tr>
<td>2</td>
<td>50-60°C</td>
<td>Protein Denaturation</td>
<td>Blanching (whitening)</td>
</tr>
<tr>
<td>3</td>
<td>90-100°C</td>
<td>Water Evaporates</td>
<td>Shrinkage</td>
</tr>
<tr>
<td>4</td>
<td>100-150°C</td>
<td>Tissue Carbonizes</td>
<td>Blackening (Charring)</td>
</tr>
<tr>
<td>5</td>
<td>> 175 °C</td>
<td>All Vaporize</td>
<td>Smokey Plume, Reduction in volume</td>
</tr>
</tbody>
</table>

Table 3: The effect of temperature increase on tissue

Operators should be aware that laser light is transmitted through transparent and translucent tissue with relatively little absorption. Particular care should be exercised so that the laser light is not transmitted through such tissue or fluids, with attendant thermal damage to more highly pigmented tissue in underlying or surrounding regions. The wavelength will be transmitted through water or other clear irrigating solutions, such as Ringer’s, without absorption.

Analysis of clinical and laboratory experience to date indicates that irradiance of roughly 100 W/cm² to 500 W/cm² is required for the adequate photocoagulation of tissues. Incisional and excisional vaporization (debulking) occurs with irradiance greater than 1000 W/cm². Irradiance greater than 5,000 W/cm² results in rapid incision. (See Table 2).
General warnings and precautions

⚠️ **WARNING** - Lumenis and/or related entities assume no responsibility for parameters, techniques, methods or results. Physicians must use their own clinical judgement and professionalism in determining all aspects of treatment, i.e. technique, proper power settings, intervals, durations, etc.

⚠️ **WARNING** - The physician should seek formal training from established courses on the use of the laser and its accessories. Any information given in this text is not intended to pro-vide such instruction, and is not to be considered a substitute. Because words can not rival actual experience, it is imperative that physicians using this equipment experience its tissue effects before ever attempting to use it on patients.

⚠️ **CAUTION** - The laser may be expected to coagulate vessels up to 1.5 mm in diameter. In larger diameter vessels, coagulation may prove difficult, and the use of means other than the laser, such as electrocautery, may be needed.

⚠️ **CAUTION** - Thermal damage caused by laser light substantially diminishes beyond the focal point of the beam or the tip of the fiber optic. Nevertheless, unfocused laser emissions travel in a straight line until obstructed or reflected, and care should be taken concerning what materials are present beyond or behind the target tissue. This is necessary to protect surgical personnel and tissues other than those intended for treatment from accidental exposure to the treatment beam.

⚠️ **CAUTION** - The laser unit should be handled carefully and moved slowly to avoid jarring. Maintenance and service should be performed only by appropriately trained personnel.

⚠️ **CAUTION** - To avoid electrical hazards from the operation of this laser unit, floors must be kept dry. In a wet-field environment, the laser should be protected from splashing and standing in pooled liquid. Personnel should avoid casual contact with the laser in a wet field. The optional watertight footswitch is strongly recommended for use in a wet-field environment.

⚠️ **CAUTION** - The footswitch should be cleaned and inspected once each day prior to use. It is recommended that someone be stationed at the laser console during surgery to control the laser. The doctor should verify all treatment parameters before firing the laser.

⚠️ **CAUTION** - In using any delivery devices or accessories, attention must be paid to the specific instructions and precautions applicable to those devices. This manual and the appropriate delivery device operator manual should be carefully read and comprehended before use.
Laser plume precautions

CAUTION - For the majority of ophthalmic procedures, there is no laser plume generated. However, the user should be aware that laser plumes do present a potential hazard. Plumes may be potentially hazardous, both in terms of particulate matter and infectivity. Special care must be taken to limit the exposure of both patient and surgical staff to any laser plume smoke or vapor.

CAUTION - Surgical staff should wear surgical masks that remove particles as small as 0.3 um. Latex surgical gloves should also be worn, as current evidence suggests that the hands are the most likely site of infective viral transmission during laser surgery. Gowns, caps, and eyewear that protect against splatter and laser light should all be worn.

CAUTION - Although it is highly unlikely that viable tumor cells occur in the laser plume, it has been reported that intact viral DNA is liberated into the air with the vapor of CO₂ laser-treated verrucae. In addition, exposure to CO₂ laser smoke has been shown to have harmful effects on the airway in animal models. The solid-state 532-nm laser plume may have similar characteristics to the CO₂ laser plume.

CAUTION - Laser plume may contain viable particulates.

CAUTION - If used, a smoke evacuation system should remove particles as small as 0.3 um with 80% efficiency. The filter should be changed regularly in accordance with the manufacturer’s instructions in order to maintain full air flow and prevent possible accumulation of infectious material.

Irradiance, fluence, and power

Refer to “Delivery Devices and Accessories” in this section, as well as to the appropriate delivery device operator manual for additional details regarding power and duration settings to achieve the desired irradiance or fluence.
Adverse effects

| ▲ CAUTION - Adequate suction must be maintained when using the laser to treat any pathology suspected to be of viral origin. This is to limit the possibility of spread of any virus that may exist in the laser plume. |
| ▲ CAUTION - Complications of laser therapy are the same as complications for any other procedure. Some of these complications may be serious and could result in death. |

Pain
The extent and duration of pain following laser therapy is usually minimal but is dependent upon the surgical procedure.

Sepsis
The possibility of infection must be considered and treated accordingly in any surgical procedure. Laser interaction with tissue sterilizes only the treated area.

Bleeding
Coagulation is the primary tissue effect of the Novus Spectra laser. The possibility of postoperative bleeding must be considered following the sloughing of tissue. Observation for bleeding by postoperative hematocrit evaluation and dressing evaluations should be considered.

Fluid overload
Mild edema and minimal electrolyte changes may occur from prolonged procedures and absorption of the distention media.
Guidelines for use

The patient should be prepared for surgery in the routine fashion for the procedure being done. This includes preoperative medications, anesthesia, surgical positioning, preparation, and draping.

The appropriate laser delivery device should be selected based upon the desired tissue effect. The choice of contact versus noncontact devices should be based upon personal preference gained from experience and training.

Noncontact and free-beam devices

See “General Information” at the beginning of this section for a description of the physics of laser light interaction. Tissue effect may be controlled by altering the distance between hand-held fiber optic delivery devices and the target tissue.

Once the treatment is completed, routine post-operative care is indicated according to the procedure done.

All recommendations for safe use of your laser system should be followed. Users should be aware of the recommended practices for the safe use of lasers in health care facilities, as described in ANSI Z136.31 and ANSI Z136.12. Laser applications done with noncontact devices are indicated throughout this manual by the following icon:

![Noncontact device icon]

Laser applications using free-beam devices, such as slit lamps, are indicated by the following icon:

![Free-beam device icon]

1. Reference 2, “General references”
2. Reference 3, “General references”
General references

The laser is used to treat several ocular diseases in both the anterior and posterior chambers of the eye. The laser is particularly well suited for treating the eye because it has minimal effect on transparent tissues and materials. This means that the laser can be efficiently delivered to opaque structures of the eye through the transparent cornea, aqueous humor, lens, and vitreous humor. This allows many conditions to be treated by noninvasive techniques.

Laser energy is delivered to opaque structures within the eye by means of a slit lamp that has been specially adapted for use as a laser delivery system.

The delivery system includes a lens system to focus the laser energy and vary the size of the laser spot in the plane of observation of the slit lamp. It usually includes some kind of mechanism to manipulate the position of the laser beam without moving the slit lamp. The laser energy is delivered to the slit lamp by means of a flexible fiber optic.

For most procedures, a laser contact lens is used to direct the laser energy to the part of the eye being treated. The contact lens may have mirrors so that laser energy can be delivered to areas of the retina behind the iris, or into the angle so that the trabecular meshwork can be treated. The contact lens also helps to hold the eye open and still so that laser energy can be delivered effectively.

The laser may be used for procedures done in the hospital or in a physician's office, and for in-patient or out-patient procedures. The use of the laser is not a contributing factor in deciding whether a procedure is done on an in- or an out-patient basis.
Posterior Segment Laser Procedures

Indications

The laser is indicated for posterior chamber procedures involving the retina. The Conditions of the retina for which the laser is useful include diabetic retinopathy, retinal detachments, and senile macular degeneration, among others.

Contraindications

Contraindications for using the laser include opacities in the cornea or lens, or blood in the vitreous humor that may interfere with the delivery of laser energy to the desired structure.

The following are additional contraindications for panretinal photocoagulation:

- Grade IV or greater glial proliferation exists throughout the posterior pole of the eye.
- Grade IV or greater vitreoretinal traction exists.
- Excessive areas of capillary closure are present by fluorescein angiography. When more than 60% of the macular and paramacular areas have been occluded by microinfarction and macroinfarction, photocoagulation has not been beneficial and has exacerbated some cases of macular edema, resulting in immediate visual loss in the treated eye.
- Florid surface neovascularization extends over most of the posterior pole in a vine-like arborization. In these cases, pituitary ablation has proved to be the method of choice for the control of these drastically afflicted eyes.
- The posterior polar regions have been replaced by surface glial proliferation, and a network of cord-like vitreous membranes exists between the various vascular components that cannot be satisfactorily attacked by any vitrectomy, vitreo-retinal, or membranectomcy procedure. In these cases, photocoagulation can shrink the closely adherent vitreous strands, causing an increase in the vitreo-retinal tractional and possibly a detachment of the retina. However, laser endophotocoagulation at the time of

Reference 7, “Ophthalmology References”
vitreoretinal surgery, when tractional membranes have been excised or lysed, can prove to be very useful when properly applied.

- The retina is grossly edematous on the basis of massive leakage of capillary structures in the posterior regions of the retina. In these eyes, photocoagulation is usually ineffective in cauterizing the smaller vessels, and high powers are necessary to obtain any type of response, most of which is ineffectual.

- The eye is afflicted with severe renal retinopathy with edema, intraretinal yellowish serum accumulations, attenuation and tortuosity of the vascular elements, and general deterioration of the retina. In these cases, photocoagulation accomplishes little, and only rarely can decrease the leakage from the small vessels or alleviate the underlying process.

- The eye is characterized by diabetic and hypertensive retinopathy changes that produce massive edema, exudates, areas of capillary closure, and other components similar to those seen with diabetic renal retinopathy. In clinical experience, photocoagulation has not helped posterior polar edema and exudation where the underlying problem has been advanced hypertension.
Adverse effects and complications

WARNING - The most common complication of panretinal photocoagulation is increased macular edema secondary to panretinal photocoagulation, usually with a concurrent decrease in visual acuity. Visual acuity loss is the result of redirection of the blood flow from the shunting vessels in the midperiphery toward the macular region. In addition, blowout hemorrhages from the areas of neovascularization, particularly on the optic nerve, have been observed, and may be caused by an increase in peripheral resistance secondary to photocoagulation, or by an inadvertent Valsalva maneuver by the patient.

WARNING - Only a contact lens specifically designed for use with laser energy should be used. Use of a standard diagnostic contact lens will result in a power loss due to reflection from the surface of the lens. The reflected energy may pose a hazard to both the patient and the physician.

Macular striae and increases in vitreoretinal traction have occurred, particularly in more advanced cases of proliferative diabetic retinopathy. These areas, as well as zones along the vitreous base, should be observed closely so that pars plana vitrectomy can be used, if necessary, to alleviate excessive vitreoretinal traction caused by the panretinal photocoagulation process.

An increase in lenticular opacities has occurred, although it is doubtful that the photocoagulation procedure contributed to the process.\(^1\)

Precautions

CAUTION - Following photocoagulation, patients should be cautioned against any activity that could increase the venous pressure in the head, neck, or eyes, such as straining, lifting, or holding their breath. Patients should be advised to sleep with the head of their bed elevated 15° to 20°.

CAUTION - Patients should be cautioned against stifling a sneeze, because this raises the blood pressure within the eyes to a high level. Vigorous nose blowing should also be discouraged. Rubbing the eyes following photocoagulation may disrupt blood vessels inside the eyes. Sneezing and coughing should be controlled with cough syrup or other medications.

CAUTION - Patients should be cautioned, however, against the use of medications such as nose drops, sprays, inhalators, or other medications that contain ephedrine or epinephrine, because these drugs tend to elevate systemic pressure.

CAUTION - Immediately following treatment, patients should avoid altitudes over 8000 ft. (Commercial aircraft cabins are pressurized below this altitude.)

\(^1\) Reference 8, “Ophthalmology References”
Guidelines for use

* For retinal laser treatments, the pupil is dilated and topical anesthetic is applied. A laser contact lens is then placed on the eye. Only a contact lens specifically designed for use with laser energy should be used. Use of a standard diagnostic contact lens will result in a power loss due to reflection from the surface of the lens. The reflected energy may pose a hazard to both the patient and the physician. The contact lens used is usually a Goldmann 3-mirror lens, a Karickhoff 4-mirror lens or a Rodenstock pan-fundus lens. These contact lenses allow the doctor to treat areas of the retina which cannot otherwise be reached by the laser. The topical anesthetic is normally adequate, but occasionally a retrobulbar injection is needed to further anesthetize the eye.

* The laser parameters for retinal procedures vary, depending on the desired results. Often the laser emission is filtered so that only the green light is used to treat the retina. This is because the longer wavelength is scattered less, and is absorbed more selectively in the layers of the retina that produce the best therapeutic result. The normal procedure is to start with a low power density that produces no visible reaction on the retina. The power density is then increased until a blanching occurs in the area being treated by the laser. The power density (power per unit area) is a function of the power being delivered by the laser and the spot size of the laser. The tissue reaction is also dependent on the total energy delivered, so the pulse duration is an important parameter. For procedures performed on the slit lamp, the pulse duration is usually kept at 0.5 s or less, so that the patient cannot move during the treatment pulse. Because the laser affects tissue by turning the optical energy of the laser light into thermal energy, a longer pulse duration means that more total thermal energy is delivered into the eye.

* The spot sizes used for retinal procedures are usually 200 to 1000 µm, although for some procedures the 100 or even the 50 µm spot will be used in the macula or around a retinal detachment. The power setting for retinal procedures is usually about 400 to 800 mW. The power setting will vary widely, however, depending on the area of the retina being treated, the spot size, the pulse duration, the pigmentation of the retina, and the turbidity of the vitreous.

The following is a list of some of the retinal conditions that can be treated with the laser, and a method of laser treatment.
Diabetic neovascular retinopathy

Laser photocoagulation is often used to control diabetic neovascularization. This condition is the proliferation of blood vessels in the retina. These newly formed blood vessels often have aneurysms that will, if left untreated, result in vitreous hemorrhage.

The laser treatment for this condition is called pan-retinal photocoagulation (PRP). During PRP, approximately 30% of the area of the retina is treated by the laser. A large spot size (100 to 400 µm) and approximately 400 to 800 mW of laser power are normally used. The laser burns are applied in a checker-board pattern with a space of untreated retina between the laser burns approximately equal to the diameter of the laser spot size. It may take as many as 1500 burns to treat an eye. Therefore, the treatment is often given in more than one session. As a result of the treatment, the treated retina dies in the region of the laser burn, and the remaining untreated retinal tissues can be supplied with sufficient nutrients by the existing blood supply, so the new blood vessels stop growing. The laser can also be used to coagulate a blood vessel that is hemorrhaging.

The macula is usually avoided whenever possible while applying laser treatment to the retina. However, if there is some condition of the macula that requires laser therapy, yellow or red wavelengths are recommended.

Retinal detachments

The laser can sometimes be used to help control retinal detachments. The desired effect is to form a chorioretinal scar by making laser burns around the detached portion of the retina. A row of burns approximately 200 to 500 µm in diameter is made around the edges of the detachment. The power used is usually about 250 to 450 mW, and the pulse duration is 0.1 to 1.0 s. After the periphery of the detachment has been secured, additional laser burns are made over the detached portion of the retina.

Complications can occur because of traction caused by the shrinkage or shortening of the vitreous strands. This traction can cause the detachment to spread. Also, as in any retinal laser treatment, if too much power is used a vitreal hemorrhage can result.
Endophotocoagulation

The preceding retinal procedures are usually done through the slit lamp delivery system. For intraoperative use, the laser energy is delivered through an endoprobe via a parsplana incision in the sclera. The size of the laser burn is controlled by changing the distance of the probe from the retina. Because the laser light exiting the probe has a fixed angle of divergence, the farther the probe is from the target, the larger the spot on the retina will be. Also, because no lens system is needed to focus the beam on the target, less power from the laser is needed to produce a whitening of the retina, which is what the surgeon looks for while photocoagulating, whether through the slit lamp or through an endoprobe. This result can usually be obtained with about 200 to 500 mW of power, depending on the size of the laser spot.

The procedures done with endoprobes include photocoagulation of retinal detachments and pan-retinal photocoagulation.
Indications

The laser is indicated to ablate tissues of the iris or trabeculum.

Uses

Other uses of the laser in ophthalmology involve the anterior segment of the eye. The two most common procedures are performed to control glaucoma. These procedures are the peripheral iridectomy for angle-closure glaucoma and trabeculoplasty for open-angle glaucoma.

Laser trabeculoplasty is not a cure for glaucoma, but another means by which operative surgery may be postponed in many patients.

Contraindications

The following conditions are contraindicated to laser trabeculoplasty:

- Aphakic eye with vitreous in the anterior chamber
- Neovascular glaucoma
- Glaucoma caused by congenital abnormalities of the angle
- Less than 90° of open angle or extensive low-lying peripheral anterior synechiae present circumferentially around the angle
- Significant corneal edema or a diminished aqueous clarity obscuring visualization of the angle detail
- Glaucoma secondary to active uveitis

The following conditions are relative contraindications to laser iridectomy:

- Marked corneal edema that may preclude the surgeon’s ability to achieve a patient iridectomy. Scattering of the laser beam by corneal edema diffuses the laser power, and precise focusing on the iris may be impossible. Use of higher powers of laser energy may cause irreparable corneal deterioration.
- Corneal endothelial burns may be generated when treating patients with an extremely shallow or flat anterior chamber. Laser applications should be timed sufficiently apart so that heat generated in the aqueous can dissipate without heating the corneal endothelium. When the anterior chamber is extremely shallow, the...
power should be reduced to avoid endothelial corneal burns. This reduction of power may require additional applications of laser energy in order to penetrate the iris.

- Contraindications to laser iridectomy include a flat anterior chamber, a completely sealed angle, and angle-closure glaucoma due to primary synechial closure of the angle. This may occur in uveitis, neovascular glaucoma, or the iridocorneal-endothelial syndrome. In these cases, pupillary block is not a contributing mechanism.

Warnings

- **WARNING** - Intraocular pressure should be closely monitored following laser iridotomy or trabeculoplasty.
- **WARNING** - Hemorrhage from the trabecular meshwork occasionally occurs and is manifested as an ooze of blood from Schlemm’s canal to the site of laser impact. This is easily stopped by increasing the pressure of the gonioprism to the cornea, or by applying a 200 µm spot size, low power coagulation at the bleeding site.
- **WARNING** - Pupillary distortion may be encountered if the iris root or peripheral iris has been treated. This distortion may or may not be permanent, depending on the severity of the accidental damage.
- **WARNING** - Angle-closure glaucoma has been reported following laser trabeculoplasty when miotics were discontinued. Medical therapy should be continued following laser trabeculoplasty.1

Precautions

- **CAUTION** - Intraocular pressure elevations have been reported to occur in up to 53% of eyes when 360° of the trabecular meshwork has been treated with 100 spots at the initial session. Intraocular pressure rises occur most frequently from 1 to 2 hours following laser treatment, although they may occur several hours afterward.2 For this reason, it is imperative to monitor patients with severe damage, particularly when visual field loss involves fixation, and it is not unreasonable to admit such patients for 24-hour monitoring of intraocular pressure following laser trabeculoplasty.
- **CAUTION** - Peripheral anterior synechiae may occur when the posterior portion of the trabecular meshwork or other structures posterior to the meshwork are treated. These are best avoided by meticulous delivery of a well-focused laser beam.
- **CAUTION** - Transient corneal epithelial burns have reportedly resolved within 1 week without scarring. Endothelial burns are rarely encountered when careful focusing is employed.

2. Reference 9, “Ophthalmology References”
Indications for Use

Adverse effects

△ CAUTION - A “snuff out” of the central visual acuity has been reported as a complication of an intraocular pressure spike. Patients with advanced field loss should be carefully treated and monitored. Progressive field loss following laser trabeculoplasty is possible, even in the presence of seemingly adequately controlled intraocular pressure.1

△ CAUTION - Rarely, severe iritis may occur, related to either an unusual patient response or improper spot location.

Guidelines for use

Peripheral iridectomy

The peripheral iridectomy is performed for angle-closure glaucoma. The desired result is a hole approximately 150 to 200 µm in diameter. The aqueous humor can then flow through this hole and the ocular pressure will be relieved.

There are several effective variations of the procedure for a peripheral iridectomy. A frequently used method is described.

1 The contact lens used to perform an iridectomy is the Abraham lens. This lens has a button on it which focuses the laser beam down to one half of its size in air. This means that the 50 µm spot is focused down to a 25 µm spot on the iris, and so the power density is raised by a factor of four. At this spot size, a laser power setting of 1 W gives a power density of about 200,000 W/cm². This is enough power to vaporize tissue. A topical anesthetic is usually sufficient to deaden the surface of the eye.

2 A rosette of four to five burns, approximately 500 µm in diameter, are made on the iris about two-thirds of the distance from the pupillary border to the iris root at about the 2:30 position. These burns are made with about 500 mW of power and a pulse duration of 0.2 to 0.5 s. The purpose of these burns is to soften the iris and find a good site to make the smaller, penetrating burns used to finish the iridectomy. If a suitable site is not found, another rosette of burns can be made at another location. A major factor in the success rate of iridectomies is the choice of a site where the hole will be made.

3 The iris is penetrated by using a 50 µm spot with a power setting of 1200 to 1500 mW (1.2 to 1.5W) and a pulse duration of 0.2 to 1.0 s. It is important that the penetrating burns be superimposed on top of each other with the laser being refocused into the bottom of the crater each time to minimize the charred tissue and the size of the hole. After the laser has burned through the

1. Reference 10,”Ophthalmology References”
iris, the iridectomy is completed by working around the edges of the hole to increase the size of the hole to approximately 150 to 200 µm.

⚠️ **CAUTION** - All glaucoma medications should be continued postoperatively. Sometimes, one of the effects of the iridectomy is a short term rise in the ocular pressure. Because the iridectomy is performed in an effort to reduce ocular pressure, this can be a serious problem. For this reason, the patient should be closely monitored after the procedure, and glaucoma medications should be continued.

Trabeculoplasty

Trabeculoplasty is a procedure used to control open-angle glaucoma. The mechanism by which trabeculoplasty reduces the ocular pressure is unclear. It is believed that the laser burn creates scar tissue which shrinks part of the trabecular meshwork so that the aqueous can again flow through the stretched meshwork and relieve the pressure.

1. Again, a topical anesthetic is used. The contact lens used is the Goldmann lens. This lens has a mirror with an angle of 62°. This allows the surgeon to see into the angle of the eye, providing a good view of the trabecular meshwork. When the mirror is in the 6 o'clock position, the 12 o'clock portion of the meshwork is viewed. The inferior half of the meshwork is usually treated first, so the lens is placed with the mirror in the 12 o'clock position.

2. The laser burns are placed at the border of the pigmented and the nonpigmented meshwork. It is important that the laser beam be focused down to a well-defined 50 um spot, so that the laser aiming beam is distinct and the burns can be precisely placed. Approximately 1.0 W of power and a 0.1-s pulse duration are used. The immediate result of the laser burn should be a depigmentation of the trabecular meshwork and minimal bubble formation at the site of the laser burn.

3. Usually 180° of the trabecular meshwork is treated, with about 50 burns equally spaced over the circumference of the inferior meshwork. Generally, the inferior meshwork is treated first because it tends to be more pigmented and laser energy is more readily absorbed. Some physicians advocate doing the other 180° about 2 weeks later, but others find that treating only 180° gives satisfactory results.

⚠️ **CAUTION** - The ocular pressure should fall for about six weeks after the treatment is performed. After this time, the pressure usually remains constant for several years. However, if the pressure begins to rise again, repeated trabeculoplasty appears to be much less successful in controlling the pressure rise than the first time the procedure is performed.
Ophthalmology References

Otologic Applications of the Laser

Users should be aware of general laser warnings, precautions, and adverse effects listed in “General Information” in this chapter.

Indications

• The laser is indicated in procedures where color-specific absorption, small spot size, and high power densities are required. The laser beam may be used to photocoagulate, vaporize, or cut tissue by utilizing the appropriate beam delivery accessory and varying spot size, output power, and pulse duration.

• The laser has been shown to achieve satisfactory results in stapedotomy, stapedectomy, tympanoplasty with fascia graft\(^1\), myringotomies\(^2\), control of bleeding, lysis of adhesions, and soft tissue adhesion (“spot welding”)\(^3\).

Uses

• The laser is indicated in both micro- and macro-otologic procedures. The selective absorption of the laser wavelength by color permits the surgeon to work on closely-approximated soft tissue which is colored red, but the laser is reflected and/or transmitted by adjacent non-red tissue.

• The laser may be used for procedures done in the hospital for in-patient or out-patient procedures. The use of the laser is not a contributing factor in deciding if a procedure is done on an in- or an out-patient basis.

Contraindications

• One investigator reported that the laser was not indicated in the removal or vaporization of cortical bone or dense bone as found in obliterate reta otosclerosis\(^4\).

• Uninflamed mastoid cases, such as endolymphatic sac surgery and cochlear implants do not benefit from the laser.

1. Reference 18, “Otology references”
2. Reference 16, “Otology references”
3. References 16 and 18, “Otology references”
4. Reference 4, “Otology references”
Warnings

⚠️ WARNING - The physician should be well acquainted with standard operating procedures and the use of the operating microscope. Formal instruction in these areas is available through established programs.

⚠️ WARNING - Although hemostasis is to be expected from use of the laser, coagulation may prove difficult in highly vascular lesions and the use of means other than the laser may be needed.

Precautions

⚠️ CAUTION - In clinical experience, the laser has not been found to be effective for obtaining hemostasis in cortical bone.

⚠️ CAUTION - Blood should not be allowed to contaminate or color the perilymph surface. A bloodless field will help prevent absorption of the laser energy by the clear perilymph.

⚠️ CAUTION - The usual precautions observed for general anesthesia for any purpose, and for otological procedures specifically, are to be followed.

Guidelines for use

Formal instruction in operative procedures is the responsibility of the physician and should be obtained on a formal basis from recognized sources.

⚠️ CAUTION - The operator should be aware of the irradiances required for specific tissue effects as are outlined throughout this manual, as well as detailed in the appropriate delivery device operator manual.

1. Reference 17, “Otology References”
Otology references

Delivery Devices and Accessories

Filters

Lumenis offers fixed and moving physician’s filters for integrated slit lamps, indirect ophthalmoscope attachments, and microscopes. These filters shield the physician’s or observer’s eyes from laser light and allow a normal field of view when the laser is in the Ready mode. The filters contain high quality optical elements for high visibility and easily attach to operating room microscopes. For a list of available filters, contact your local Lumenis representative. Lumenis eye safety filters may be sterilized using activated dialdehyde solutions formulated for plastic and rubber equipment. These solutions may be obtained from most medical supply companies.

Acculite Endoprobe or fiber optic devices

Fiber optic endoprobes, such as the Lumenis Acculite endoprobe, when used to deliver laser energy, are effective tools for both anterior and posterior segment photocoagulation. Anterior segment treatment of the iris or ciliary body is effective in the surgical management of glaucoma. Endophotocoagulation is a useful adjunct to vitreoretinal surgery, including panretinal photocoagulation, retinopexy, and treatment of neovascularization.

Spot sizes delivered through the Acculite endoprobes vary, depending on the distance of the Acculite endoprobe tip from the treatment site. Power requirements vary from 300 milliwatts to 1 watt, depending on the type of treatment and the desired tissue effect.

Endoprobes are supplied pre-packaged and sterile for one-time use only. Fibers are precision-cut and polished to rigid optical specifications to provide maximum energy delivery. An exterior jacket protects the fiber from damage. Fibers and probes attach to the fiber port on the front panel of the laser.

Because fibers can be damaged if not used properly and can also injure a patient, the physician should make the following checks before activating the laser:

• Ensure that the fiber is fully inserted into the laser aperture. This will allow the best efficiency through the laser fiber.

• Care must be taken when handling the optical fiber not to bend or kink it excessively since this could fracture the fiber allowing laser light to emerge from the fracture site.

• Identify all tissues that lie in the potential path of the laser beam to avoid laser exposure to tissues other than those undergoing treatment.

• Carefully identify and protect all relevant anatomic structures from possible undesired exposure.
• Ensure that the probe tip does not come into direct contact with tissue when treating; if it does, the optical efficiency of the fiber will be compromised.
• Use a suction tip in the treatment area to evacuate the laser plume.
Fluence

Fluence is the measurement of energy delivered in relation to the area of the treatment beam or energy density. Irradiance is the measurement of power delivered in relation to the area of the treatment beam or power density. This measurement is helpful in determining the power setting to use for a particular treatment. Fluence and irradiance for various power and duration settings can be calculated using the following equations:

\[F = \frac{E}{A} \quad \text{Equation 3} \]

\[I = \frac{P}{A} \quad \text{Equation 4} \]

\[E = P \times T_s \quad \text{Equation 5} \]

\[A = \pi r^2 = \pi \left(\frac{d}{2}\right)^2 = 0.7854d^2 \quad \text{Equation 6} \]

where

<table>
<thead>
<tr>
<th>F = Fluence (J/cm²)</th>
<th>T_s = Time duration in seconds (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I = Irradiance (W/cm²)</td>
<td>A = Spot size area in cm²</td>
</tr>
<tr>
<td>E = Energy (J)</td>
<td>d = Spot diameter</td>
</tr>
<tr>
<td>J = Joules</td>
<td>r = Spot diameter ÷ 2</td>
</tr>
<tr>
<td>P = Power out of fiber in watts (W)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 lists resulting spot sizes using approximate irradiance and fluence for 1 W of delivered power, durations of 0.5 s and 1.0 s, and a fiber diameter of 300 or 600 µm.

<table>
<thead>
<tr>
<th>Fiber Diameter (µm)</th>
<th>Spot Size (mm)</th>
<th>Spot Size Area (cm²)</th>
<th>Irradiance (W/cm²)</th>
<th>Fluence at 1 s (J/cm²)</th>
<th>Fluence at 0.5 s (J/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 (0.3 mm or 0.3 cm)</td>
<td>0.3</td>
<td>.000707</td>
<td>1415</td>
<td>1415</td>
<td>707</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>.0707</td>
<td>14</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>600 (0.6 mm or 0.06 cm)</td>
<td>0.6</td>
<td>.00283</td>
<td>354</td>
<td>354</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>.0707</td>
<td>14</td>
<td>14</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 4: Irradiance and Fluence at 1 W and 0.5 s and 1.0 s Delivered
Figure 1 shows the spot size as a function of distance from the end of the fiber optic, and Figure 2 illustrates the relationship between irradiance and the distance from the fiber tip.

Figure 1. Spot size as a function of distance from fiber tip

Figure 2: Irradiance as a function of distance from fiber tip
Table 5 lists the irradiance obtained at 1 W delivered power for 200, 300, and 600 µm diameter fiber optic accessories held from 0 to 5 mm from the tissue target. Taking into consideration the irradiance which is effective for each procedure, the user can determine the different laser power settings.

Table 5: Spot Size and Irradiance at 1 W Delivered

<table>
<thead>
<tr>
<th>Fiber Optic</th>
<th>Distance from tissue (mm)</th>
<th>Spot Size (mm)</th>
<th>Irradiance (W/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 µm</td>
<td>0</td>
<td>0.20</td>
<td>3183</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.45</td>
<td>641</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.69</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.94</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.18</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.43</td>
<td>62</td>
</tr>
<tr>
<td>300 µm</td>
<td>0</td>
<td>0.30</td>
<td>1415</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.55</td>
<td>428</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.79</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.04</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.20</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.53</td>
<td>55</td>
</tr>
<tr>
<td>600 µm</td>
<td>0</td>
<td>0.60</td>
<td>354</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.85</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.09</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.34</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.58</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.83</td>
<td>38</td>
</tr>
</tbody>
</table>
Indications

The indirect ophthalmoscope is indicated for the delivery of laser energy in eyes harboring peripheral retinal pathology such as retinal breaks, lattice degeneration, or peripheral neovascularization.

The following are indications for the use of the LIO:

• Any eye requiring laser treatment out to the ora serrata
• Treating eyes with rubeosis iridis from central vein occlusion
• Treating eyes during pneumatic retinopexy retinal reattachment procedures
• Delivering laser energy through small pupils or to eyes with focal lens opacities
• diabetic retinopathy (pan-retinal photocoagulation)
• segmental peripheral photocoagulation
• segmental photocoagulation
• cloudy vitreous cavities
• pediatric retinal repairs (under general anesthesia)

Uses

• The LIO is used in the treatment of retinal detachments in the peripheral fundus, anterior to the equator. Other potential uses include extending a PRP further anterior than can conveniently be reached with a conventional slit lamp laser photocoagulator.
• Retinal photocoagulation may be done in patients with media opacities which make conventional photocoagulation at a slit lamp difficult or impossible.
• Treatment of patients in the supine position is also possible with the LIO.

Contraindications

• The LIO should not be used in or near the macula, or in other areas of the eye where accuracy more precise than 300 um is required. The instabilities inherent in the aiming of the LIO preclude its use in these areas.
• The doctor should always hold the viewing lens so that his view of the target is free of aberrations when the laser is fired. Aberrations
can affect the size of the laser spot and will change the power density delivered to the retina. Aberrations can also produce a non-uniform power density (or “hot spots”) in the laser spot.

• It is recommended that the condensing aspheric lens used to image the retina have a power of 20 diopters. Lenses with powers other than 20 diopters may be used but the physician should understand the relationship between hand-held lens power, the sensitivity of position of the optical elements involved, and the final retinal spot size. Refer to your LIO operator manual for additional detailed information concerning spot size, working distance and power.

• The condensing lens used with the LIO should be clear and should have an anti-reflective coating. Although condensing lenses are available with yellow tints to reduce the amount of short-wavelength light which reaches the retina, these tinted lenses should not be used with the LIO because a large percentage of the laser energy is absorbed by this type of lens.

• The LIO should not be used if there is blood in the vitreous that obstructs the view of the retina. The high absorption of laser wavelengths by blood may preclude the use of the LIO if blood is present in the vitreous.

Warnings

⚠️ **WARNING** - All normal precautions pertaining to laser safety should be carefully observed. These include everyone present in the room (other than the doctor and the patient) wearing laser safety goggles, warning signs posted at all entrances to the area where the laser is being used, and only nonflammable drapes and anesthetics being used.

⚠️ **WARNING** - The LIO should be carefully inspected before each use to be sure that it is not damaged.
Guidelines for use

- The LIO can be configured at the factory for use with a Lumenis argon laser, krypton laser, or diode-green (Novus Spectra) laser. Only the filter material and electrical characteristics differ.

- The LIO consists of an indirect ophthalmoscope that has been modified with an automatic laser safety shutter and a lens system to focus the laser beam.

- Like an unmodified indirect ophthalmoscope, the LIO is mounted on a headband. The LIO is connected to the laser by a fiber optic which is plugged into the laser in the same way that any Lumenis fiber optic is connected to the laser.

- The LIO is designed to conveniently deliver laser energy to the far periphery of the fundus. With the indirect ophthalmoscope, the doctor has a clearer view of the areas of the fundus which are anterior to the equator of the eye than can be obtained using a slit lamp.

- Another advantage is the ability to position the patient to take advantage of gas bubbles that are injected into the eye during pneumatic retinopexy to force the retina into the proper position (so that it is resting against the choroid). If the laser treatment can be performed when the retina is in this position, the retina can be attached using the laser and may be less likely to detach again. If the patient can be positioned so that the retina can be treated without the laser beam having to pass through the gas bubble, it makes the laser treatment easier.

- A third potential advantage over conventional slit lamp delivery systems is the fact that the LIO does not employ a contact lens to direct the laser beam. Because there is no contact with the eye, it may be possible to treat eyes that are injured and cannot have any force exerted on them.

- The LIO can also be used with scleral depression in place of, or as an adjunct to cryotherapy. It has been theorized that the use of cryotherapy scatters cells from the retinal pigment epithelium, which may lead to proliferative vitreoretinopathy. There is no evidence that laser treatment scatters these cells, and so it may be an improved treatment modality for retinal reattachment procedures.

- The laser spot size can be changed by varying the distance between the LIO and the condensing lens, and by varying the distance from the condensing lens to the retina. Both of these distances are limited if a clear view of the fundus is to be obtained. However, the ability of the user’s eyes to accommodate changing focal length can have an effect on the laser spot size if the user is not aware of this phenomenon while adjusting the image of the retina.
• Because this condensing lens is the last optical element that the laser beam passes through, the power and position of this lens will have an effect on the laser beam in terms of spot size and the focus of the image of the laser beam on the retina.

• For most eyes, the image of the retina formed by the hand-held lens is real, inverted, and located a few centimeters above the hand-held lens.

The magnification, M, of the two-lens system created by the hand-held lens and the eye is

$$M = \frac{60 \text{ diopter}}{\text{power of hand-held lens}}$$

where 60 diopter is the refractive power of a “standard” eye. The magnification of an indirect ophthalmoscope using a 20-diopter hand-held lens is 3X, and the magnification of the system when using a 30-diopter lens is 2X.

• Because the laser beam is a converging beam, the size of the laser beam in the retinal image plane can be varied by moving the point of focus of the laser beam out of the laser beam’s object plane (retinal image plane). Figure 2 shows how altering working distance affects retinal spot size. Note that because the laser beam divergence angle of small spot sizes is greater than the laser beam divergence angle of large spot sizes, working distance has a greater effect on the small spot sizes.

References—Indirect ophthalmoscope

Sit lamps and Laserlinks for slit lamps

Users should be aware of the general laser warnings, precautions, and adverse effects outlined in “General Information” in this chapter, as well as the warnings, precautions, and contraindications specific to ophthalmic procedures.

Description

Several integrated slit lamp models are available from Lumenis, as are LaserLinks for adapting your existing diagnostic slit lamp to your Spectra laser. LaserLinks are available for Zeiss and Haag-Streit, as well as most third-party equivalent slit lamps.

The integrated slit lamp with laser delivery system is designed to project a focused laser beam into the focal plane of the microscope. The delivery system provides a continuous zoom spot size over a range from 50 to 1000 um. It also incorporates an internal protective physician’s filter.

Indications

Slit lamp delivery systems and LaserLinks are indicated for the delivery of laser energy to the eye. They can be used in conjunction with contact lenses designed for the delivery of laser energy. Lumenis slit lamp attachments and integrated slit lamps are indicated for the delivery of laser energy in posterior chamber procedures involving the retina.

Conditions of the retina for which the slit lamp is useful include:

- Diabetic neovascular retinopathy
- Retinal detachments
- Senile macular degeneration

The slit lamp can also be useful for indications involving the anterior segment of the eye. The two most common procedures used to control glaucoma are:

- Peripheral iridectomy for angle-closure glaucoma
- Trabeculoplasty for open-angle glaucoma

Contraindications

There are no contraindications specific to the use of the slit lamp.

Guidelines for use

Refer to the appropriate delivery system Operator Manual for specific instructions regarding the use of a slit lamp.
Decontamination Certificate

Under the provisions of Postal Law, Title 18, United States Code, Section 1716, and Department of Transportation regulations contained in CFR 49, Part 173.386 and 173.387, “etiologic agents, diagnostic specimens and biological products...are nonmailable…”

The undersigned therefore certifies that the Lumenis equipment being returned herein by

_____________________________ ______________________________
Individual/Institution City, State, Country

has undergone decontamination with a commercially available germicide cleared for use as a “Hospital Disinfectant” and is clean and free from biohazards, including—but not limited to—human or animal blood, tissue or tissue fluids or components thereof.

The undersigned also agrees to reimburse Lumenis for any costs incurred in cleaning the enclosed equipment, in the event said item(s) is/are received by Lumenis in a contaminated condition.

_____________________________ ______________________________
Model Model

_____________________________ ______________________________
Serial Number (if applicable) Serial Number (if applicable)

_____________________________ ______________________________
Lumenis RMR Number Lumenis RMR Number

_____________________________ ______________________________
Typed/Printed Name Position/Title

_____________________________ ______________________________
Signature Date